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Abstract. The method of group foliation can be used to construct solutions
to a system of partial differential equations that, as opposed to Lie’s method of
symmetry reduction, are not invariant under any symmetry of the equations.
The classical approach is based on foliating the space of solutions into orbits
of the given symmetry group action, resulting in rewriting the equations as a
pair of systems, the so-called automorphic and resolvent systems, involving the
differential invariants of the symmetry group, while a more modern approach
utilizes a reduction process for an exterior differential system associated with
the equations. In each method solutions to the reduced equations are then used
to reconstruct solutions to the original equations. We present an application of
the two techniques to the one-dimensional Korteweg-de Vries equation and the
two-dimensional Flierl-Petviashvili (FP) equation. An exact analytical solution
is found for the radial FP equation, although it does not appear to be of direct
geophysical interest.

1. Introduction. The main theoretical objects of study in geophysical fluid dy-
namics are systems of partial differential equations describing the time evolution
and thermodynamics of rotating stratified fluids [23, 28]. Finding exact analytical
solutions to these nonlinear partial differential equations (PDEs) can be exception-
ally difficult, and increasingly physicists have instead turned to numerical solution
methods. The rapid growth of computing power in the last few decades has made
numerical methods more compelling, but perhaps more importantly, the compu-
tational tools now available allow many partial differential equations to be solved
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using only a few basic methods. Numerical results, however, can not provide the
same confidence in the understanding of the underlying physics as analytical solu-
tions do. Ideally, standard analytical methods could be applied towards identifying
solutions to nonlinear PDEs with the same level of robustness as current computa-
tional techniques. Unfortunately, in sharp contrast with their linear counterparts,
very few general analytical techniques exist for solving nonlinear PDEs.

One general approach that is applicable to many nonlinear PDEs is the method
of symmetry reduction originally proposed by Sophus Lie. In Lie’s method the point
symmetry group of a system of PDEs is first computed algorithmically by solving
the linear determining equations for symmetry generators. Any subgroup of the full
symmetry group can then be used to reduce the system in order to construct solu-
tions to the original equations that are invariant under the action of the subgroup
[17]. This method is used implicitly by physicists when identifying radial solutions
(rotation invariance) or traveling wave solutions (Galilean invariance), but also ex-
plicitly to reveal more complicated symmetry groups and corresponding invariant
solutions (see, e.g., [27]). An unfortunate consequence of symmetry reduction is to
eliminate any solution not invariant under the given group, which severally restricts
the scope of available solutions and limits the applications to the physical sciences.

A more general, but less explored, technique to the analytical integration of PDEs
is the method group foliation. The classical approach developed by Vessiot [30] can
be applied to the same large class of linear and nonlinear PDEs as symmetry re-
duction, but it does not suffer from the limitations imposed by group invariance.
Group foliation relies on a symmetry group’s action on the space of solutions to the
differential equation. Because the action of symmetry group transforms solutions
to solutions, an individual solution can be transformed into other solutions along
the same orbit by applying the group action. The method of group foliation pro-
vides a reduction of the original system of PDEs by constructing a set of equations
identifying the individual orbits. Solutions found in the space of the reduced coor-
dinates can then be returned to the full space by solving another system of PDEs.
Importantly, in contrast with symmetry reduction, Vessiot’s method, at least in
principle, can be used to construct any solution of the original system from the
reduced equations.

Although the method of group foliation was first put forth more than a century
ago, renewed interest in the technique has only recently begun to develop. What
might be described as the classical method of group foliation can be found in mod-
ern form in [19]. Here, a complete set of differential invariants of the differential
equations’ symmetry group are first computed and these are then chosen as the new
coordinates with which to rewrite the equations. The resulting system is augmented
by including differential relations between the invariants, known as syzygies. Ap-
plications of this method are still a rarity [16, 2], but owing to recent advances in
the complete algorithmic description of a symmetry group’s differential invariants
and their syzygies [18, 8], the technique has become more readily applicable.

More recent work [4, 13, 14, 25], recasts a system of PDEs as an exterior differ-
ential system (EDS) which is reduced under the action of the symmetry group of
the equations; a process we call the EDS method of group foliation. The EDS en-
codes the differential equation as a set of differential forms known as contact forms
that are defined on a subspace determined by the differential equations. This set of
contact forms is reduced by including only the semi-basic forms, which are differen-
tial forms in the EDS annihilated by the infinitesimal generators of the symmetry
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group action. Solutions to the original system are then constructed from those of
the reduced system via integrating a system of differential equations of generalized
Lie type for the group parameters. Applications of this technique for finite dimen-
sional symmetry groups can be found in [4], while the infinite dimensional case of
pseudogroups is treated in [25].

Here we provide an introduction to both the classical and the EDS methods of
group foliation in the context of geophysical fluid dynamics (GFD). Our goal is to
introduce these techniques to the GFD community, by illustrating their application
to familiar equations, and to highlight some of the challenges that remain.

2. Geophysical fluid equations. The geophysical fluid dynamical equations that
we consider here are the one-dimensional Korteweg-de Vries (KdV) equation and
various forms of the Flierl-Petviashivili (FP) equation. We are interested in the
Flierl-Petviashivili equation in particular as an extension to quasi-geostrophic the-
ory. Satellite altimetry observations of oceanic mesoscale features were initially
compared to attributes predicted for linear Rossby waves [9], but higher resolution
data now shows that the observed features are dominated by a high degree of non-
linearity and remain coherent structures for long durations [10]. In particular, the
ratio of the observed eddy heights to the equivalent depth of the first baroclinic
mode strongly violate the small amplitude assumptions made in quasi-geostrophic
theory. The Flierl-Petviashvili equation extends quasi-geostrophy by allowing for
larger amplitude features by introducing an additional height nonlinearity.

The FP equation (1) arises in several different contexts including the Great Red
Spot on Jupiter [24], as well as modifications to quasi-geostrophy with an exterior
mean shear flow [15], finite amplitude height changes [3, 7], and thermobaricity of
the equation of state [11]. In a general non-dimensionalized form, the equation can
be written with only one constant β−1 as

[

∇2φ−
(

φ− 1

2
φ2

)]

t

+ φx + β−1 · J(∇2φ, φ) = 0, (1)

where φ(x, y, t) is a two-dimensional time-dependent stream function, J(a, b) =
axby − aybx is the 2-dimensional Jacobian, and β−1 = O(100) for oceanic values.
This differs from the quasi-geostrophic potential vorticity equation [23, 28] by the
addition of the φ2 term. No general analytical solutions to equation (1) are known,
although the equation has been modeled numerically with β−1 = 1 [29].

The FP equation (1) can be reduced into a number of physically interesting
forms. By assuming that φ takes the form of a scaled traveling wave such that
φ(x, y, t) = λ2ψ (λ(x− ct), λy) where λ =

(

1 + c−1
)

, solutions to the reduced two-
dimensional equation,

∇2ψx − ψx + ψψx = 0, (2)

also satisfy the FP equation (1). With the additional assumption of radial symme-
try, equation (2) is further reduced to

∂

∂r

[

1

r

∂

∂r

(

r
∂ψ

∂r

)

− ψ +
1

2
ψ2

]

= 0. (3)

Solutions to the radially symmetric equation (3) have been found numerically [15]
and by approximation [24, 5], but as of yet, no exact analytical solutions seem to
have appeared in the literature. Finally, when equation (2) is restricted to only
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one dimension [15, 26] by positing ψ(x, y) = u(x), the equation reduces to the
one-dimensional traveling wave form of the Korteweg-de Vries equation,

uxxx − ux + uux = 0. (4)

We will apply the method of group foliation to the three different equations (2),
(3) and (4), beginning by solving the KdV equation (4) using both the classical and
EDS methods of group foliation. The KdV equation reduces from a third order non-
linear ordinary differential equation to a first order ordinary differential equation
on the quotient manifold. For the radial FP equation (3), reduction based on the
scaling symmetry turns out to result in the obvious integration, but the integrated
equations, for a particular value of the constant of integration, admits a symmetry
that can used to construct an exact analytical solution. Finally, we consider the
more complicated 2-D FP equation (2) in polar coordinates and reduce it by the
EDS method under the rotational symmetry. We conclude with some remarks on
the challenges of applying the EDS method to the full symmetry group of the FP
equation (1).

3. Korteweg-de Vries equation.

3.1. Nonlinear wave solution. The Korteweg-de Vries equation is a classical
example of a completely integrable system and has been thoroughly analyzed [1].
The physically interesting (real and bounded) cnoidal solution of (4) can be written
in general form as

u(x) = 1 + α2

{

1 − k2

[

2 − 3 cn2

(

α
x− x0

2
, k2

)]}

. (5)

The constant α scales the length and amplitude, x0 translates the origin, and k
varies the amplitude and the modulus of the elliptic function cn.

In terms of the original wave function φ(x, t), these solutions represent a train of

traveling waves with amplitude dependent speed c =
(

α
2 − 1

)−1
. The well-known

sech2 solitary wave (soliton) solution is recovered from (5) in the limit k2 7→ 1, for
which the distance between the periodic waves is infinite.

3.2. Point symmetries. Central to both methods of group foliation is the ex-
istence of nontrivial symmetries for the differential equation of study. A basic
introduction to analyzing point symmetries of differential equations can be found
in e.g. [17], but we will briefly introduce here the concepts necessary for the basic
computations.

A differential equation can be thought of as the zero set of some function of
independent and dependent variables, and the derivatives of the dependent vari-
ables. In the case of one independent and dependent variable (x, u), the equation
∆(x, u, ux, uxx, ...) = 0 is simply an ordinary differential equation. An example of
this is provided by the KdV equation (4) with ∆ given by

∆(x, u, ux, uxx, uxxx) = uxxx − ux + uux = 0.

We denote the total space of independent and dependent variables by E = {(x, u)}
and the associated third order jet space by J3 = {(x, u, ux, uxx, uxxx)}. In general,
the order n of the jet space Jn reflects the highest order derivative appearing in the
equations.

By definition, the group of point symmetries of a system of differential equations
consist of a local Lie group of transformations acting the total space E that map
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any solution of the equations to a new solution. More concretely, let u = f(x) be a
solution to the the KdV equation (4) and G be a group of transformations acting
on E = (x, u). Then G is a symmetry group of the equation provided that for each
g ∈ G it is true that the transformed function ũ = g · f(x) is also a solution to the
KdV equation (4).

Central to the algorithm for computing the point symmetries of a differential
equation is the correspondence between finite transformations and their infinitesimal
generators. For example, a one-parameter family of finite transformations, such
as the rotations (x, u) 7→ (x cos θ − u sin θ, x sin θ + u cos θ), θ ∈ R, define a curve
through each point in the total spaceE, in this case a series of concentric circles. The
corresponding infinitesimal transformation is the vector field everywhere tangent to
these curves, namely w = −u∂x + x∂u for the group of rotations. Conversely, a
vector field v = ξ(x, u)∂x + η(x, u)∂u defined on the total space E = {(x, u)} gives
rise to a family of finite transformations obtained by exponentiating the generator,
(x̃, ũ) = exp[ǫv](x, u), i.e., by finding the flow of v by solving a system of ODEs.

The next step is to determine the action of an infinitesimal transformation v on
the derivatives of the dependent variable, a process known as the prolongation of v

to Jn. The prolongation formula can be derived by first finding the action of finite
transformations on the derivative variables by an application of the chain rule and
then computing the associated infinitesimal generator [17]. In this paper we will
only treat differential equations involving one unknown function, so it suffices to
consider a vector field on the total space E = {(xi, u)} given in component form as
v =

∑p
i ξ

i(xi, u)∂xi + φ∂u. The prolongation of v to the n-th order jet space Jn

can then be written as

pr(n)v =

p
∑

i

ξi(xi, u)∂xi +
∑

|J|≤n

φJ∂uJ
, (6)

with the coefficients φJ given by

φJ = DJ

(

φ− ξiui
)

+

p
∑

i=1

ξiuJ,i. (7)

Here J = (j1, j2, . . . , jn) stands for a multi-index of integers andDJ = Dj1Dj2 · · ·Djn

denotes the repeated application of the coordinate total derivative operators

Dj = ∂xj +
∑

|K|≥0

uK,j∂uK
. (8)

The point symmetries arising from a local Lie group action can now identified
by solving the determining equations for the infinitesimal generators of the group
action. In the case of the KdV equation, these are found by prolonging a generic
vector field v = ξ(x, u)∂x+η(x, u)∂u on the total space E = {(x, u)} to the jet space
J3 = {(x, u, ux, uxx, uxxx)} and then demanding that the infinitesimal determining
equations

Lpr(3)v(uxxx − ux + uux) = 0 whenever uxxx − ux + uux = 0,

are satisfied. One thus finds two independent point symmetries with the infinitesi-
mal generators

vx =∂x, vs = x∂x + 2(1 − u)∂u, (9)
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corresponding to a translation and a scaling. By exponentiating the generators with
(x̃, ũ) = exp[ǫv](x, u) we recover the corresponding finite transformations

(x, u) 7→(x+ ǫ, u), (x, u) 7→ (eǫx, 1 − e−2ǫ(1 − u)). (10)

As a symmetry of the differential equation, the scaling transformation in (10)
has the property that if u(x) is a solution to the KdV equation, then so is ũǫ(x) =
1− e−2ǫ (1 − u(e−ǫx)). In terms of the solution (5) the group action simply rescales
α. Indeed, we find that

ũǫ(x) = 1 + α2e−2ǫ

{

1 − k2

[

2 − 3 cn2

(

αe−ǫ
x+ x0

2
, k2

)]}

, (11)

which changes the value of α to αe−ǫ, where ǫ ∈ R. It is in this sense that, given
fixed values of x0 and k, the action of the scaling symmetry traces out an orbit
of solutions belonging to the same equivalence class. Simply by finding a single
solution at any point along the orbit, say when α = 1, we can recover the entire
equivalence class of solutions by applying the scaling transformations. In this sense
the entire space of solutions can be partitioned into orbits, the equivalence classes,
and the quotient manifold, denoted Sol/G, is the space of these equivalence classes.

The central idea of the method of group foliation is to exploit this partitioning
afforded to us by the structure of the equation’s symmetry group, and, roughly
speaking, rewrite the equation on a certain quotient manifold determined by its
point symmetries. Specifically, for the KdV equation, we will use vx to translate
x0 and vs to scale α. We should expect then that we will reduce the KdV equation
from a third order ODE to a first order ODE, with the single constant of integration
representing the modulus k of equation (5).

3.3. Classical method of group foliation. In the first step, the classical method
of group foliation requires finding the automorphic system, which describes the
orbits of the symmetry group action on the solution space Sol. The automorphic
system is charaterized by the property that all of its solutions can be obtained
from a fixed solution by symmetry transformations. As is expounded in [19], the
automorphic system is described in terms of differential invariants of the symmetry
group, which are split into new independent and dependent variables. For the KdV
equation (4) this is the only equation, but in general, the automorphic system must
be augmented with the resolving system, which encodes the integrability conditions
of the former by way of syzygies among the differential invariants.

Differential invariants are functions of the jet space coordinates that are un-
affected by the action of the group. Thus differential invariants ζ(x, u, ux, ...) of
the whole group generated by the two vector fields vx and vs must vanish when
acted upon by the prolongations of either vector field. The prolongations take the
following form

pr(2)vx =∂x, (12)

pr(2)vs =x∂x + 2(1 − u)∂u − 3ux∂ux
− 4uxx∂uxx

, (13)

and together the prolonged group action maps coordinates by

µ(λ, ǫ, x, u, ux, uxx) =
(

ǫ−1(x+ λ), 1 − ǫ2(1 − u), ǫ3ux, ǫ
4uxx

)

. (14)

Invariance under the first vector field vx implies that differential invariants are
independent of x. Consequently, the lowest order invariant can be found by looking
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for the x independent characteristics of the system pr(2)vsζ = 0. The lowest order
invariant is therefore found by integrating

du

2(1 − u)
=
dux
−3ux

, whereby ζ =
ux

(1 − u)
3
2

. (15)

Appealing to our physical sense, using the differential invariant ζ poses a problem
because 1−umay take on negative values in which case ζ will become imaginary. To
resolve this, we simply use the squared value and define the lowest order differential
invariant as

y =
u2
x

(1 − u)3
. (16)

The next order invariant is similarly found and is given by

w =
uxx

(1 − u)2
. (17)

To verify that y and w are indeed differential invariants, simply apply the group
action (14) to see that the group parameters λ and ǫ cancel out, as expected. When
writing equation (5) in terms of these invariants, neither x0 nor α will play a role.
As the next step in the algorithm we choose y as the new independent and w as the
new dependent variable.

We still need to compute a third order invariant to rewrite the KdV equation (4)
in terms of the new variables. As is well known (see. e.g., [17], proposition 2.53),
the derivative

dw

dy
=
Dxw

Dxy
=

2wy1/2 + uxxx(1 − u)−5/2

2y1/2w + 3y3/2
(18)

yields a new differential invariant. For simplicity, we will use w1 = uxxx(1− u)−5/2

as our third order differential invariant so that in terms of w and y,

w1 =
dw

dy

(

2wy1/2 + 3y3/2
)

− 2wy1/2. (19)

Now one can easily see that the KdV equation becomes

w1 − y1/2 = 0. (20)

Writing this using y and w only we see that

(2w + 3y)
dw

dy
− 2w − 1 = 0. (21)

Equation (21) can be written in a standard form by letting a = 2w+3y and z = 5y,
which yields

aaz = a− 6

25
z +

2

5
, (22)

where a and z denote the differential invariants

a =
2uxx

(1 − u)2
+

3u2
x

(1 − u)3
, z =

5u2
x

(1 − u)3
. (23)

Equation (22) is an Abel equation of the second kind [31], a first order ODE,
exactly as anticipated. Any solution to this equation yields a family of solutions to
the KdV equation (4) when the original coordinates are reintroduced. Before ex-
amining solutions to (22), we will consider the alternative method of group foliation
based on exterior differential systems.
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3.4. EDS method of group foliation. The exterior differential systems (EDS)
method of group foliation [4, 13, 14, 25] requires rewriting the equation in terms
of a differential ideal involving differential forms on the jet space Jn. An exterior

differential system (also called a differential ideal) on Jn is a subset I ⊂ Ω∗(Jn) of
the exterior algebra of all differential forms on Jn satisfying the following properties:
(i) if ω, ω̄ ∈ I, then ω + fω̄ ∈ I for any smooth function f on Jn, 2) if ω ∈ I and
η is any form in Ω∗(Jn), then the wedge product ω ∧ η ∈ I, and 3) if ω ∈ I, then
the exterior derivative dω ∈ I.

A differential equation ∆ : Jn → R determines a submanifold S∆ in the jet
space Jn, and so the contact ideal on Jn, when restricted to S∆, encodes the
differential equation and, as a consequence, its solutions. Recall that contact forms
are characterized by the property that their pull-backs under the prolongation (i.e.,
under computing repeated derivatives) of any function f : X → U vanishes, where
we have written the total space E = X × U as the product of the spaces X and U
of the independent and dependent variables. For the KdV equation (4) it suffices
to consider the contact ideal on the second order jet space J2 with coordinates
(x, u, ux, uxx). Setting the contact forms ω1 = du− uxdx and ω2 = dux − uxxdx to
zero requires that

ux =
du

dx
and uxx =

dux
dx

.

The KdV equation (4) is therefore described by the exterior differential system I
generated by the forms ω1, ω2 and the form ω3 = duxx − (1 − u)uxdx; in short

I = 〈ω1 = du− uxdx, ω
2 = dux − uxxdx, ω

3 = duxx − (1 − u)uxdx〉. (24)

The EDS method of group foliation requires us to find a reduced exterior dif-
ferential system Ī on the quotient manifold associated with the symmetry group
action. In practice Ī is constructed by identifying the forms in I, the so-called
semi-basic forms, that are annihilated by the prolonged infinitesimal generators of
the group action and restricting these to the quotient manifold. As our prolonged
infinitesimal generators are Γ(2) = span{pr(2)vx, pr(2)vs}, the semi-basic one-forms
are determined by

I1
sb =

{

α ∈ I1 : iXα = 0, for all X ∈ Γ(2)
}

. (25)

An arbitrary one-form in I takes the form β = β1ω
1 + β2ω

2 + β3ω
3, where β1,

β2, β3 are smooth functions on J2. Now β is semi-basic provided that the two
conditions

vx y β = 0, vs y β = 0, (26)

are satisfied. We write equations (26) in matrix form as

[

ux uxx (1 − u)ux
xux − 2(1 − u) 3ux + xuxx x(1 − u)ux + 4uxx

]





β1

β2

β3



 = 0. (27)

By performing a basic matrix row reduction to solve for the unknowns, we find one
independent semi-basic form, which is given by

β =
[

(1 − u)
(

3u2
x + 2uxx(1 − u)

)

− uxx
(

4uxx + 2(1 − u)2
)]

ω1

+ux
(

4uxx + 2(1 − u)2
)

ω2 −
(

3u2
x + 2uxx(1 − u)

)

ω3.
(28)
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In terms of coordinate differentials, we have

β =
[

(1 − u)
(

3u2
x + 2uxx(1 − u)

)

− uxx
(

4uxx + 2(1 − u)2
)]

du

+ux
(

4uxx + 2(1 − u)2
)

dux −
(

3u2
x + 2uxx(1 − u)

)

duxx,
(29)

where the dx terms cancel by virtue of (26).
The next step is to choose a cross-section and pull back β. In order to write our

equation in the same form as equation (22), we define our cross-section by

σ(z, a) =

(

x = 0, u = 0, ux =
(z

5

)
1
2

, uxx =
1

2

(

a− 3

5
z

))

, (30)

where a, z denote the differential invariants (23). The du term vanishes on pullback,
giving

σ∗β =
1

2

[(

a− 6

25
z +

2

5

)

dz − ada

]

. (31)

This form generates the ideal Ī on the quotient manifold corresponding to the
reduced equation, which is

aaz = a− 6

25
z +

2

5
. (32)

Equation (32) is identical to equation (22), which we found by Vessiot’s method
that directly employs differential invariants of the group action. While in the EDS
computation it may initially appear as if we had avoided the entire complication of
using differential invariants, these do indirectly play a role in our choice of the cross-
section (30), as can be seen via a simple application of the moving frames algorithm
[12]. Compare the cross-section of equation (30) with the group action (14) and
use the u coordinate to solve for the group parameter, which gives ǫ = (1− u)−1/2.
When this value of ǫ is substituted into the equations

ǫ3ux =
(z

5

)
1
2

, ǫ4uxx =
1

2

(

a− 3

5
z

)

,

and the resulting expressions are solved for a and z, the specific choice of differential
invariants is recovered, namely those in (23).

3.5. Reconstruction. Equation (32) possesses the parametric solution

s̄(t) = (z(t), a(t)) =

(

C
(5t− 2)2

(5t− 3)3
+

5

3
, Ct

(5t− 2)2

(5t− 3)3

)

, (33)

see [31]. The constant C is related to the constant k of equation (5). All that
remains is the reconstruction problem, that is, recovering solutions of the original
equation (4) from (33). The classical group foliation and the EDS methods provide
two different approaches.

Starting with the EDS method, we look for solutions of the form

s(t) = µ(γ(t), σ ◦ s̄(t)), (34)

where µ denotes the group action (14) and γ(t) is a symmetry transformation to be
chosen so that the resulting s(t) vanishes on the ideal I defined in (24), see [4]. In
the standard coordinates of J2, equation (34) becomes

s(t) =

(

ξ(t), 1 − η(t), η3/2(t)

(

z(t)

5

)1/2

,
η2(t)

2

(

a(t) − 3

5
z(t)

)

)

. (35)
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Here the unknown functions ξ(t), η(t) are related to the group parameters λ and ǫ
in (14) by

ξ(t) = λ/ǫ, η(t) = ǫ2,

but they are now assumed to explicitly depend on the variable t. Next we simply
compute the pullbacks of the generators (24) of the EDS I under s(t) and demand
that the resulting forms vanish. This produces the equations

σ∗ (du− uxdx) =

[

du

dt
− ux

dx

dt

]

dt =

[

−η̇(t) − η3/2(t)

(

z(t)

5

)1/2

ξ̇(t)

]

dt = 0,

σ∗ (dux − uxxdx) =

[

dux
dt

− uxx
dx

dt

]

dt

=

[

3

2
η1/2(t)

(

z(t)

5

)1/2

η̇(t) +
1

10
η3/2(t)

(

z(t)

5

)−1/2

ż(t)

−η
2(t)

2

(

a(t) − 3

5
z(t)

)

ξ̇(t)

]

dt = 0.

The two equations can be solved simultaneously to yield

ξ̇(t) =
ż(t)

a(t)
√

5z(t)η(t)
, η̇(t) = −1

5

ż(t)

a(t)
η(t). (36)

Requiring that the pullback of ω3 under s(t) vanishes imposes no further constraints
on the function ξ(t) or η(t).

Reconstruction using Vessiot’s method requires that we solve the expressions for
the invariants (23) for u. Given that our solution (33) involves a parameter t, we
will also construct x and u as functions of t. The expression for the z invariant in
(23) produces the equation

ẋ(t) =

√
5u̇(t)

√

(1 − u(t))3z(t)
. (37)

We obtain the second equation by differentiating the z invariant and then using the
expression for the a invariant in the resulting equation, which yields

u̇(t) =
1

5

ż(t)

a(t)
(1 − u(t)). (38)

We note that the above equations are equivalent to the equations (36) for ξ(t), η(t),
which we will integrate next.

The group parameter α is recovered as the constant of integration from the
equation for η(t) in (36). If we use

t =
1

5

2s+ 3

s+ 1

to reparameterize equation (33), we find that η(s) = α2s. It then follows from
equation (36) that

dx

ds
=
dξ

ds
= −

√
3

α

1
√

s3 − C(s+ 1)
, (39)

which produces the translation group parameter x0 upon integration in terms of an

elliptic integral. To fully recover the solution (5), redefine the constant C = δ3

1+δ
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and change variables by s = δ − q to see that

x− x0 =

√
3

α

∫

1
√

−q
(

q2 − 3δq + δ2 2δ+3
δ+1

)

dq. (40)

The roots of the quadratic are r± = 3
2δ± δ

2

√

δ−3
δ+1 . These are real if δ > 3, in which

case r+ > r− > 0, or if δ < −1, in which case 0 > r− > r+. For brevity, we only
consider the first case, in which the integral can be written as

x− x0 =

√
3

α

∫

1
√

(r+ − q)(q − r−)q
dq. (41)

This can be expressed in terms of a standard elliptic integral [6] as

x− x0 =

√
3

α

2

r+
sn−1

(√

r+ − q

r+ − r−
, k2 =

r+ − r−
r+

)

. (42)

Solving (41) for q and writing the result in terms of u gives exactly the solution (5).

4. Radial FP equation.

4.1. Integration. The approximate and numerical solutions of the radial FP equa-
tion appearing in [15], [24], [5], were found by first integrating equation (3) to

1

r

∂

∂r

(

r
∂ψ

∂r

)

− ψ +
1

2
ψ2 = c, (43)

and then setting the constant of integration to zero, c = 0. An important difference
between equations (3) and (43) for the purposes of group foliation is that for c 6=
−1/2, equation (43) admits no point symmetries. If c = 1/2, equation (3) admits
the same scaling symmetry as was found for the KdV equation, namely,

pr(2)vs = r∂r + 2(1 − ψ)∂ψ − 3ψr∂ψr
− 4ψrr∂ψrr

, (44)

with the finite action given by

(r, ψ, ψr , ψrr) 7→
(

λ−1r, 1 − λ2(1 − ψ), λ3ψr, λ
4ψrr

)

. (45)

In this special case the method of group foliation can be applied to reduce the
equation to a first order ODE.

4.2. Solution. The solvable form of the radial FP equation,

1

r

∂

∂r

(

r
∂ψ

∂r

)

+
1

2
(ψ − 1)2 = 0, (46)

unfortunately, does not appear to be of physical interest as the FP equation is
derived under the assumption ψ ≪ 1, while equation (46) would appear to require
that as r 7→ ∞, ψrr 7→ 0 and ψ 7→ 1. Nonetheless, we present this new solution in
the appendix as it is the only known exact analytical solution of (3).
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5. 2-D FP equation in polar coordinates. Applying the method of group foli-
ation to an ordinary differential equation as in the preceding sections is essentially
equivalent to using Lie’s symmetry based method for integrating these equations
(see, e.g., [17], section 2.5). While there is no direct extension of Lie’s algorithm to
equations with more than one independent variable, the two group foliation methods
can be applied to systems of PDEs with the same basic reduction and reconstruction
steps as are described above.

As an example, we consider the once integrated form

1

r

∂

∂r

(

r
∂ψ

∂r

)

+
1

r2
∂ψ2

∂θ2
− ψ +

1

2
ψ2 = 0 (47)

of the two-dimensional FP equation (2) written in polar coordinates The total
space for equation (47) is E = (r, θ, ψ) and the associated jet space is given by
J2 = {(r, θ, ψ, ψr, ψθ, ψrr, ψrθ, ψθθ)}. To apply the EDS approach of section 3, we
encode the equation as the differential ideal

I =〈ω = dψ − ψr dr − ψθ dθ, ωr = dψr − ψrr dr − ψrθ dθ,

ωFP = dψθ − ψrθ dr + r2
(

ψrr +
1

r
ψr − ψ +

1

2
ψ2

)

dθ〉
(48)

on J2. Equation (47) admits translational symmetries in x and y, as well as a rota-
tional symmetry which, in polar coordinates, is simply represented by a translation
in the θ direction and is thus generated by the vector field vθ = ∂θ. Here we will
apply the EDS foliation algorithm with the rotational symmetry only.

Taking an arbitrary one-form in the ideal, β = β1ω+β2ωr+β3ωFP, and requiring
that it vanish under the interior product with pr(2)vθ, we find the semi-basic forms

β1
sb =

(

pr(2)vθ y ωFP

)

ω −
(

pr(2)vθ y ω
)

ωFP, (49)

β2
sb =

(

pr(2)vθ y ωr

)

ω −
(

pr(2)vω y θ
)

ωr, (50)

which, when written in coordinate basis, become

β1
sb =(∆ψr − ψrθψθ)dr − ∆dψ + ψθdψθ, (51)

β2
sb =(ψrθψr − ψrrψθ)dr − ψrθdψ + ψθdψr, (52)

where ∆ = −r2
(

ψrr + 1
rψr − ψ + 1

2ψ
2
)

.
By choosing our cross-section with coordinates coordinates q, s, A, B, C and F

as

σ(q, s, A,B,C, F ) = (r = q, θ = 0, ψ = s, ψr = A,ψθ = B,ψrr = C,ψrθ = F ) ,
(53)

we find that

σ∗ω1
sb =(∆σA− FB)dq − ∆σds+BdB,

σ∗ω2
sb =(FA− CB)dq − Fds+BdA,

(54)

where

∆σ = −q2
(

C +
1

q
A− s+

1

2
s2
)

. (55)



GROUP FOLIATION AND GFD 1583

Annihilating σ∗ω1
sb and σ∗ω2

sb and regarding (q, s) as the new independent variables,
we obtain the system of equations

BBq =FB − ∆σA,

BAq =CB − FA,

BBs =∆σ,

BAs =F.
(56)

After some algebraic manipulations, this system of equations together with (55)
yield the system

Hq =AsH −AHs, Hs = −q2
(

Aq +AAs +
1

q
A− s+

1

2
s2
)

, (57)

only involving the unknown functions A and H = B2/2. Thus, by applying the
EDS method, we are able to reduce the elliptic equation (47) to a system of two
quasi-linear equations (57), and, again, any solution of (47), including non-invariant
ones, can, at least in principle, be reconstructed from the solutions of the system
(57).

6. Conclusions. The classical and EDS methods of group foliation, when applied
to the ODEs (3) and (4), provide useful techniques for reducing the order of the
equations. In the case of the KdV equation (4), the general solution to the third
order equation is recovered from the solutions of the Abel equation of the second
kind, a first order ODE. The reduction of the radial FP equation (3) using the scaling
symmetry simply results in the integration apparent by inspection. However, for a
particular value of the constant of integration, the integrated equation (46) admits
the same symmetry as its progenitor. This additional symmetry allows the equation
to be integrated to yield an exact analytical solution to the radial FP equation.

The application of the two methods of group foliation to PDEs, such as the 2-D
FP equation (2), follows the same basic steps as in the case of ODEs. Various forms
of the reduced equations can now be derived by choosing different symmetry sub-
groups defining the foliation or different cross-sections to the group orbits, allowing
multiple approaches to solving the equations by the use of the same technique. As
an example, the reduction of the 2-D FP equation written in polar coordinates (47)
under the rotational symmetry is considered here. This results in rewriting the
elliptic equation (47) as a system of two quasi-linear equations (57) that may be
easier to analyze.

In the examples considered in this paper, the EDS method generally proves to
be a simpler and more flexible approach than Vessiot’s classical method. In the ap-
plication of the EDS method to the KdV and the radial FP equation, the reduced
equations on the quotient manifold were obtained without the need of having to
compute the differential invariants of the symmetry group action, in contrast with
the classical method that, in its original form, requires explicit expressions for the
invariants and for their syzygies. Furthermore, choosing a different cross-section
(and therefore a new set of differential invariants), the EDS method allows one to
rewrite the reduced equations in new coordinates in an efficient manner. The recon-
struction step in the EDS method is also straightforward to set up, and amounts
to solving a system of differential equations of Lie type for the symmetry group
parameters.

As the equation and its symmetry group increase in complexity, the advantages
of the EDS method over Vessiot’s approach become less pronounced. With the
help of the moving frames method for computing differential invariants and their
syzygies [18, 8], the classical method of group foliation can be similarly used to
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write the reduced equations on the quotient manifold, identified as a cross section
to the symmetry group orbits, without having to employ the explicit expressions for
the differential invariants. For the symmetry subgroup of the 2-D FP equation (2)
consisting of scalings and translations, this produces a system of three first order
coupled differential equations. Here the main difficulty with applying the EDS
method is in finding a managable basis for the semi-basic forms. However, as is
implicit in the moving frames techniques applied in [25], if invariant contact forms
are introduced in place of the coordinate differentials, the ensuing computations are
vastly simplied and yield a basis for semi-basic forms that are comparably complex
to the expressions one encounters in the application of Vessiot’s method. Ultimately
a combination of both the classical and EDS methods may be required in order to
treat the more intricate examples.

Acknowledgments. We wish to thank Bill Smyth and the reviewers whose helpful
comments lead to a number of improvements in the presentation.

Appendix A. A solution to the radial FP equation. In the interest of brevity,
we derive the solution to (46) directly using standard substitutions. First we sub-
stitute ψ(r) = 1 + r−2x(ln r) and let t = ln r, which transforms (46) into

∂2x

∂t2
− 4

∂x

∂t
+ 4x+

1

2
x2 = 0. (58)

By designating

y(x) =
1

4

∂x

∂t
, (59)

and substituting, the above equation can be reduced further to an Abel equation of
the second kind in canonical form,

yyx − y = −1

4
x− 1

32
x2. (60)

Solutions to Abel equations of the second kind can be expressed in terms of
the elementary functions only in special cases [31]. However, a general solution
developed in [20] and summarized in [22], [21] allows the construction of an exact
analytical solution to equation (60). Specifically,

y(x) =
1

2
(x + λ0)

[

N(x) +
1

3

]

, (61)

where λ0 is the constant of integration and N(x) is a function to be defined below.
Recalling the definition (59) for y, the above equation implies that

t(x) =

∫

dx

2(x+ λ0)
[

N(x) + 1
3

] − t0. (62)

This produces a solution to (46) in parametric form that can be written in terms
of x as

ψ(x) = 1 + xe−2t(x), r(x) = et(x). (63)

Next let

G(x) =
1

16

[

(τ sin τ + cos τ) ci τ + cos2 τ
]

(4τ ci τ + cos τ)

(τ ci τ)3
· (x+ λ0) −

1

2
x− 1

16
x2,

(64)
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where τ = ln |x+ λ0|, and write

p(x) = −7

3
+

(

4G(x) − x− 1

8
x2

)

(x+ λ0)
−1,

q(x) = −20

27
+

1

3

(

4G(x) − x− 1

8
x2

)

(x+ λ0)
−1.

(65)

Then the specific form of the function N(x) in (62) depends on the sign of the
subsidiary function

Q(x) =

(

p(x)

3

)3

+

(

q(x)

2

)2

as follows.
1. Q < 0 (p < 0):

N1(x) = 2

√

−p
3

cos
a

3
,

N2(x) = −2

√

−p
3

cos
a− π

3
,

N3(x) = −2

√

−p
3

cos
a+ π

3
,

where cos a = − q

2
√

−(p/3)3
, 0 < a < π.

(66)

2. Q > 0:

N(x) = 3

√

− q
2

+
√

Q+ 3

√

q

2
−
√

Q . (67)

3. Q ≡ 0:

N1(x) = 2 3

√

− q
2
, N2(x) = −2 3

√

− q
2
. (68)

It’s worth noting that despite the complicate form of this solution, this is an
explicit solution which can be directly plotted which shows, as predicted, an un-
bounded solution.
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transformations, Acta Math., 28 (1904), 307–349.

[31] V. F. Zaitsev and A.D. Polyanin, “Handbook of Exact Solutions for Ordinary Differential
Equations,” Chapman & Hall/CRC, 2003.

Received September 2009; revised February 2010.

E-mail address: jearly@coas.oregonstate.edu

E-mail address: juha@science.oregonstate.edu

E-mail address: rsamelson@coas.oregonstate.edu

http://www.ams.org/mathscinet-getitem?mr=MR1620769&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2352605&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2384719&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1873888&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1240056&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2462450&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR668703&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2125571&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2313766&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1555005&return=pdf

	1. Introduction
	2. Geophysical fluid equations
	3. Korteweg-de Vries equation
	3.1. Nonlinear wave solution
	3.2. Point symmetries
	3.3. Classical method of group foliation
	3.4. EDS method of group foliation
	3.5. Reconstruction

	4. Radial FP equation
	4.1. Integration
	4.2. Solution

	5. 2-D FP equation in polar coordinates
	6. Conclusions
	Acknowledgments
	Appendix A. A solution to the radial FP equation
	REFERENCES

