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ABSTRACT

The long-term evolution of initially Gaussian eddies is studied in a reduced-gravity shallow-

water model using both linear and nonlinear quasi-geostrophic theory in an attempt to

understand westward propagating mesoscale eddies observed and tracked by satellite altime-

try. By examining both isolated eddies and a large basin seeded with eddies with statistical

characteristics consistent with those of observed eddies, it is shown that long term eddy

coherence and the zonal wavenumber-frequency power spectral density are best matched

by the nonlinear model. Individual characteristics of the eddies including amplitude decay,

horizontal length scale decay, zonal and meridional propagation speed of a previously unrec-

ognized quasi-stable state are examined. The results show that the meridional deflections

from purely westward flow (poleward for cyclones and equatorward for anticyclones) are

consistent with satellite observations. Examination of the fluid transport properties of the

eddies shows that an inner core of the eddy, defined by the zero relative vorticity contour,

contains only fluid from the eddy origin, while a surrounding outer ring contains a mixture

of ambient fluid from throughout the eddy’s lifetime.
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1. Introduction

Baroclinic Rossby waves have long been known to play an important role in the spin-up of

the ocean (Anderson and Gill 1975) and so their apparent direct observation through satellite

altimetry measurements of global sea surface height (SSH) (Chelton and Schlax 1996) was

a well celebrated result. These early observations were shown to differ in their predicted

phase speed from linearized quasi-geostrophic theory which motivated numerous attempts

to modify the classical theory (e.g., Killworth et al. (1997); Tailleux and McWilliams (2001);

Killworth and Blundell (2005)). However, subsequent observations from higher resolution

SSH fields constructed from multiple satellite altimeters have cast doubt on the original

interpretation of the observations as linear waves (Chelton et al. 2007, 2011). The enhanced

observations now show more eddy-like structures that remain coherent for long durations,

with opposing meridional deflections for cyclones and anticyclones, and suggest a significant

degree of nonlinearity through several non-dimensional parameters. Motivated by these

observations, we examine the basic characteristics of Rossby waves and eddies in a standard

quasi-geostrophic setting.

We consider both linear (β−1 = 0) and nonlinear (β−1 �= 0) quasi-geostrophic theory in

a reduced-gravity shallow-water model,

∂

∂t

(∇2η − η
)
+

∂η

∂x
+ β−1 · J (

η,∇2η
)
= 0 (1)

where the dimensionless variable η(x, y, t) is a sea-level height perturbation scaled by a repre-

sentative value η0, and the Jacobian is defined as J(a, b) = axby − aybx. The nondimensional

coefficient β−1 = U
β0L2

R
where U = gη0/(f0LR) is the geostrophic velocity scale associated

with η0, g is the acceleration of gravity, β0 is the meridional gradient of the Coriolis param-
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eter and LR is the Rossby radius of deformation. Equation (1) is typically written with the

non-dimensional parameter β associated with the planetary vorticity term (β ∂η
∂x
); however,

the convention used here uses the long-wave time scale of (β0LR)
−1, rather than the advec-

tive time scale LR/U , so that equation (1) reduces to a parameter independent form of the

linearized Rossby wave equation when β−1 = 0.

In the first set of experiments presented here, the linear (β−1 = 0) and nonlinear evolution

of individual Gaussian initialized eddies (Ae−r2/L2
where A is the amplitude and L is the

radial length scale) are first compared and it is shown that the long term coherence of the

observed eddies cannot be explained by the linear theory. For the linear and nonlinear

cases, a basin is then seeded continuously for 150 years with Gaussian eddies with statistical

characteristics that approximate those of the eddies observed with altimetry. By considering

the zonal wavenumber-frequency power spectral density, we are able to compare model results

with observations and it is shown that linear theory does not explain the observed spectra

and must be rejected.

In the second set of experiments, isolated Gaussian initial conditions are modeled with

the nonlinear equation for time durations much longer than in past studies. It is shown

that a previously unrecognized quasi-stable eddy state emerges. Individual characteristics

of these eddies are then diagnosed including amplitude decay, horizontal length scale decay,

propagation speed and fluid transport properties. These provide baseline properties for com-

parison with the observations and other theories. It is shown that the meridional deflections

from due westward propagation, the transport properties, and zonal propagation speeds are

generally consistent with those of observed eddies.
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2. Nonlinear Dynamics

a. Waves versus Eddies

To compare wave-like and eddy-like mesoscale features, consider the single Rossby plane-

wave solution to the fully nonlinear quasi-geostrophic equation (1),

η(x, y, t) = N0 cos(kx+ ly − ωt+ φ) (2)

whereN0 is a constant amplitude, k and l are zonal and meridional wavenumbers, ω = −k
k2+l2+1

is the nondimensional frequency, and φ is a constant phase (Pedlosky 1987). Although

equation (2) solves both the linearized and nonlinear form of equation (1), only for β−1 = 0 do

linear combinations of Rossby waves solve the nonlinear equation (1). For long wavelengths,

k, l � 1, the linearized form of the equation is only weakly dispersive and so it is conceivable

that linear features might remain coherent for long durations as observed in the altimetry

data.

An initial comparison between the linear and nonlinear form of the equation can be made

by considering the evolution of an initially Gaussian sea surface height perturbation. For

all model runs an equivalent depth of D = 80 cm (gravity wave phase speed of 2.8 m/s)

was used at latitude 24◦. This could equivalently be thought of as a single 800 m layer

with reduced gravitational acceleration of approximately 1 cm/s2. This corresponds to the

observed deformation radius LR = 47 km along 24◦ in the eastern North Pacific (Chelton

et al. 1998) with time scale (β0LR)
−1 of 12 days and the long-wave Rossby wave speed is

therefore cx = β0L
2
R = 4.7 cm/s. For a scale height of 10 cm these parameters require setting

β−1 = 7.5, while for the linear form of the equation β−1 = 0.
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An initial perturbation of η(x, y, 0) = N0e
−r2/L2

with amplitude N0 = 15 cm and length

scale L = 80 km was modeled for 365 days using the two forms of the equation; the results

are shown in figure (1). The linear evolution is dominated by Rossby wave interference

patterns, although the sea surface maximum can still be observed to propagate westward.

The nonlinear evolution also shows Rossby wave interference patterns, but is dominated by

the coherent westward propagating sea surface maximum. The nonlinear anticyclonic eddy

also shows a much slower amplitude decay rate and an equatorward deflection (McWilliams

and Flierl 1979), both qualitatively consistent with the observations reported by Morrow

et al. (2004) and Chelton et al. (2007, 2011).

All experiments used pseudospectral methods (Canuto 2006) to compute spatial deriva-

tives and fourth-order Runge-Kutta time stepping to iterate forward in time, still one of the

more accurate and efficient iterative techniques available (Durran 1991). To ensure numeri-

cal stability, spectral vanishing viscosity was used to prevent the buildup of energy at higher

wavenumbers (Tadmor 1989). The premise is to construct a typical low order hyper-viscosity

operator, like those found in McWilliams and Flierl (1979) or Maltrud and Vallis (1993),

but then to filter this operator such that low wavenumbers are completely undamped. The

original results obtained in Tadmor (1989) that restrict the choices of this filter are nicely

reviewed in Karamanos and Karniadakis (2000). This approach has since been used in other

fluid models with great success (Gelb and Gleeson 2001; Pasquetti 2005). Because the do-

main is doubly-periodic, a sponge layer was added to all four sides in order to prevent signals

from crossing the boundaries. The numerical model was validated by comparison with the

steady dipole solution found analytically in Flierl et al. (1980), by doubling the resolution

of all experiments, and by varying the damping techniques and damping parameters.
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b. Eddy Seeding Experiment

To compare the wavenumber-frequency spectra of observations with those of the linear

and nonlinear models, a basin 8300 km by 3850 km was seeded by modifying the instan-

taneous stream function at a random sequence of times during the full 150 years of the

simulation with Gaussian eddies placed at random locations throughout the domain. The

seeded eddies had amplitude (both positive and negative), horizontal length scale distri-

butions, and spatial and temporal frequencies of occurrence that matched the statistics of

the observed eddies in a region of the subtropical North Pacific (Chelton et al. 2011). The

simulation was run and continuously seeded with these eddies throughout the domain for

150 years.

The sea surface height 13 years into the two model runs is shown in figure (2). Because the

linear model simply evolves the phases of individual Rossby waves, the energy at individual

wave numbers cannot transfer to other wave numbers and changes only by virtue of the

energy continuously added by the eddy seeds. The sea surface height for the linear model

therefore consists of an evolving interference pattern from the superposition of waves with

length scales unmodified from the original eddy seeds. Conversely, the nonlinear model

allows interactions between wavenumbers and transfers energy to different scales just as in

the study of quasi-geostrophic turbulence (Vallis 2006). The nonlinear model run shows

a clear trend toward reduced energy at short wavelengths (see figures 2 and 3). Further,

the eddies can be observed from an animation to interact by distortions, changes in their

propagation paths, and merging, unlike the linear case.

The zonal frequency-wavenumber spectra in figure (3) show very different behaviors be-
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tween the two models. For the spatial domain, analysis was restricted to 1500 km west of the

eastern most-eddy seeds to a box 5500 km in zonal extent and 3600 km in meridional extent.

For the linear model, the spectral power is restricted to frequencies below the meridional

wavenumber l = 0 of the zonal Rossby wave dispersion relation. This is consistent with

theory, as waves with given zonal (k) and non-zero meridional wavenumbers (l �= 0) have

frequencies that remain below the frequency for l = 0. The spectral power for the nonlinear

model is distributed substantially differently than for the linear model. The signals are es-

sentially non-dispersive for lower wavenumbers for both models, while the energy at higher

wavenumbers remains centered near the same non-dispersive slope for the nonlinear model

but not the linear model. The zonal frequency-wavenumber spectrum of the nonlinear model

is very similar to that of the observations in figure (4), while the linear model fails to explain

the non-dispersive structure observed.

It is noteworthy that small “spurs” of spectral power extend a short distance along the

dispersion relation for both the model and the observations. In the case of the observations,

it is not clear from figure (4) whether this spur of spectral variance is more consistent with

either of the modified Rossby wave theories than with the classical theory. Distinguishing

between these theories is not an objective of this study since the model considered here is not

capable of representing the processes of vertical shear or rough bottom topography that are

the physical basis for the modified theories. The spur of spectral power along the dispersion

relation in the case of the reduced gravity model considered here is investigated in more

detail from monopole experiments in section 4.

Figure (5) shows distributions of the deviation from due west propagation of the eddies in

the eddy seeding experiments. The linear model shows no systematic preference for merid-
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ional deflection, matching the results of purely westward propagation found for the isolated

Gaussian in figure (1). The spread of meridional deflection angles is evidently attributable

to randomness in the interference patterns from the superposition of the waves in the linear

solution. In contrast, the eddies tracked in the nonlinear model show distinct tendencies

for poleward and equatorward deflection for cyclonic and anticyclonic eddies, respectively.

This is consistent with the observations that show similarly opposing deflections of cyclones

and anticyclones. However, in the observations, the mean deflection angle for combined

cyclones and anticyclones is rotated a small but significant amount equatorward from due

west (Chelton et al. 2011). This asymmetry about due west in the observations cannot be

explained by quasi-geostrophic theory because the meridional component of equation (1) is

antisymmetric with a change in height polarity (η �→ −η). The slight equatorward rotation

of the mean deflection angle from due west in the observations may be an indication of the

effects of meridional advection or the effects of vertical shear on the total potential vorticity

gradient vector from ambient currents (Samelson 2010) that are not included in the zero

mean flow, reduced-gravity model considered here.

Figure (6) shows the distributions of the tracked eddy speeds normalized by the long

Rossby wave phase speed cx = β0L
2
R. The mean value of the distribution for the linear model,

μ = 0.54, falls far below the mean value of the observations for the Northern Hemisphere,

μ = 0.74. However, the mean value of the distribution from nonlinear model, μ = 0.77,

shows a significant increase over the linear model that is comparable to the observations.

The largest difference between the observations and the nonlinear model is in the variability

of the distributions. The failure of the nonlinear model to capture the variability of the

observations may be attributed to the simplicity of the nonlinear model which includes
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only a single independent vertical mode and variations in the Coriolis parameter as the

only contribution to the potential vorticity gradient – or it could be an indication of the

importance of non geostrophic effects that are not included in the model.

The long term coherence of the isolated eddies, the wavenumber-frequency spectra from

the eddy seeding experiments, their meridional deflection and their distribution of tracked

speeds suggest that linearized quasi-geostrophic theory is not a viable theory to explain the

observed westward propagating features. Nearly all of the observed properties are well ex-

plained by nonlinear quasi-geostrophic theory confirming that the observed signal represents

eddies obeying nonlinear dynamics rather than Rossby waves obeying linear dynamics.

3. Monopoles

a. The three states of evolution

The interest in eddies on a β-plane has generated a long history of analytical and nu-

merical models attempting to elucidate some of their basic properties, such as amplitude

decay and propagation speeds and directions. The two-dimensional quasi-geostrophic po-

tential vorticity equation (1) lacks many of the complexities associated with multilayer quasi-

geostrophic or primitive equation models, yet remains sufficiently complex that the evolution

properties of Gaussian initialized disturbances are still not completely understood. Previous

studies have typically recognized two distinct states in the evolution of a quasi-geostrophic

eddy: an initialization period followed by what was assumed to be a quasi-stable state (Su-

tyrin et al. 1994; Korotaev 1997; Reznik et al. 2000). Here we will argue that there are
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actually three states: formation of the β-gyre (initialization), an adjustment period (for-

merly believed to be quasi-stable), and a third quasi-stable, slowly decaying state that has

not previously been explored.

Typical amplitudes (5, 10, 15, 20 cm) and radial length scales (40, 60, 80, 100, 120 km)

were used to initialize isolated Gaussians with parameters representative of latitude 24◦ N

in the eastern North Pacific. These correspond to non-dimensional amplitudes of (0.5, 1.0,

1.5, 2.0) and non-dimensional length scales of (0.85, 1.27, 1.69, 2.12, 2.54). It is important

to note that cyclonic eddies (negative amplitudes) can be safely omitted from consideration

because equation (1) is symmetric when changing polarity provided the sign of y is flipped

as well. Formally, if s(x, y, t) is a solution to equation (1), then s̃(x, y, t) = −s(x,−y, t) is

also a solution of equation (1). Any conclusions drawn here for anticyclonic eddies therefore

also apply to cyclonic eddies provided the terms equatorward and poleward are swapped.

For these Gaussian initializations, a quasi-stable westward propagating eddy generally

emerges as the dominant feature. When the model was initialized with non-Gaussian solitary

shapes, other solutions were more likely to emerge (including eastward propagating dipoles),

but the quasi-stable westward propagating eddy was still part of the solution, although

sometimes with very different amplitude and length scale than the initialization shape. These

quasi-stable eddies are the focus of this study, but we briefly consider the other two transient

stages as well.
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1) Formation of the β-gyre

The first component of an eddy’s evolution is the formation of the β-gyre, in which an

initially axisymmetric eddy evolves an azimuthal mode-one component due the β effect over

a time scale (β0LR)
−1 ≈ 12 days (Fiorino and Elsberry 1989). The flow associated with the

dipole structure of the gyre initially causes a largely meridional deflection of the eddy, which

then eventually propagates more zonally. Analytical predictions for the trajectory of an

eddy have previously been found to agree well with numerical simulations for time periods

less than (β0LR)
−1, after which the radiation of Rossby waves strongly alters its evolution

(Sutyrin and Flierl 1994; Reznik and Dewar 1994).

This initialization period must be expected because a Gaussian shape cannot be a sta-

ble solution for the quasi-geostrophic potential vorticity equation (1). A radially symmetric

shape like a Gaussian causes the Jacobian to vanish; meaning that the advection of rel-

ative vorticity is trivial (advection is still present, but moves fluid parcels to locations of

fluid parcels with identical relative vorticity). Because the advective nonlinearity is initially

trivial, linear Rossby wave dispersion due to the β effect will necessarily cause the initially

Gaussian shape to become asymmetric as explored in Flierl (1977) (see figure 7 below). This

asymmetry will in turn induce non trivial advection of relative vorticity through the Jacobian

term.

Here we consider an explanation of the formation of the β-gyre valid for this short time

scale initialization period t < (β0LR)
−1. The initial disturbance is a positive Gaussian and

the resulting anticyclonic eddy can be thought of as either the local sea surface maximum

or the local relative vorticity minimum. Recall that without the dispersive and advective
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terms in equation (1) the initial disturbance would propagate zonally with unaltered shape

at exactly the linear long-wave speed. The evolution of the eddy can therefore be thought

of as a deviation from perfectly zonal propagation by advection and dispersion.

i. Because the initial disturbance is radially symmetric, the first time step is governed

entirely by linear dynamics. The disturbance maximummoves westward, but due to the

dispersive relationship between the group velocity and wavelength, the signal associated

with longer wavelengths will travel farther westward, while the signal associated with

shorter wavelengths will travel more slowly westward (eastward for the very shortest

wavelengths). The net effect is a decrease in the western slope and steepening of

the eastern slope, evidently because the shorter wavelengths, which are required to

describe steeper slopes, trail to the east of the longest wavelengths, which are required

to describe shallower slopes.

ii. As the gradient of the leading edge shallows and the gradient of the trailing edge

steepens, advection plays a larger role (this is the formation of the β-gyre). The

stronger equatorward flow on the east side of the anticyclonic eddy considered here and

weaker poleward flow on the west side cause net equatorward meridional advection of

fluid at the eddy’s centroid, and therefore an equatorward deflection of the anticyclonic

eddy (McWilliams and Flierl 1979). Note that this requires a height difference across

the eddy, consistent with the idea that the eddy formed from the initial disturbance is

best described by relative vorticity contours rather than height contours, as elucidated

in more detail later. The initially equatorward deflection is particularly strong because

the net initial advection is exactly equatorward. The eddy therefore initially translates
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to the southwest for this northern hemisphere anticyclone.

iii. After time periods of t ∼ (β0LR)
−1 an asymmetric shape of the eddy forms to provide a

near advective-dispersive balance. This shape is characteristic of both the adjustment

period that follows the β-gyre formation and the subsequent long-term quasi-stable

state. Dispersion moves much of the signal to the region east of the eddy maximum

(as can be seen in the linear case of figure 1) while advection moves fluid to the south-

western region. These two effects do not completely balance, with the difference being

approximately an order of magnitude less than their respective individual values, and

the net effect is to pull the eddy to the southeast from otherwise due westward prop-

agation at the long wave phase speed. Linear dispersion is responsible for slowing the

westward propagation of the eddy, never quite reaching the linear 4.7 cm/s long-wave

speed (Flierl 1977), while the advection is responsible for deflecting the anticyclonic

eddy equatorward (McWilliams and Flierl 1979).

2) Adjustment Period

After time periods of t ∼ (β0LR)
−1, the eddy’s evolution is largely dictated by its energy

loss due to the excitation of Rossby waves (Flierl 1984). Figure (8) shows changes in the

decay rates of the length scale, amplitude, and the zonal speed and meridional speed over

the first 600 days of the eddy’s evolution. There is a distinct adjustment period over the first

200 days, t ∼ 20(β0LR)
−1, where the changes are quite rapid. These values were obtained by

tracking the relative vorticity extremum and recording the contour of zero relative vorticity,

the local sea surface maximum, and the sea surface height e-fold contour.
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It was noted in Sutyrin et al. (1994) that at around 175 days (converted to the scales used

here) a tripole emerges in the potential vorticity field. The rapid changes in eddy properties

during the end of the adjustment period (figure 8) may reflect processes associated with

the emergence of this tripole structure. Perhaps not coincidentally, it is also around 200

days that analytical predictions of the eddy path show qualitatively poor agreement with

numerical results (Sutyrin et al. 1994; Korotaev 1997; Reznik et al. 2000).

For most of the cases considered here, the transition from initialized Gaussian to quasi-

stable, slowly decaying eddy followed the pattern shown in figure (8). However, some of

the large length scale and small amplitude Gaussians (which have smaller Umax) took much

longer, and sometimes never even reached the quasi-stable state, instead dispersing with more

wave-like characteristics due to the weak nonlinearity of these eddies. This is consistent with

the results in Sutyrin et al. (1994) where it was found that given their chosen length scale,

there exists a critical intensity below which the tripole in the potential vorticity field failed to

emerge. The length of the adjustment period depends on the height and length of the initial

Gaussian, but for most cases the quasi-stable state is generally reached at approximately

100-200 days, t ∼ 15(β0LR)
−1.

3) Quasi-Stable State

The quasi-stable eddy state for a northern hemisphere anticyclone always has the char-

acteristic shape shown in figure (7) that is necessary for maintaining the near advective-

dispersive balance. The height field is characterized by a steep south-southeastern edge,

while the north-northwestern edge is particularly shallow. The resulting geostrophic veloc-
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ity field consists of strong flow in the south-southeastern region and weak flow along the

north-northwestern edge. The asymmetry in the height field is easily seen from the cyan

e-fold contour.

In the co-moving frame, the height field (equivalent to the stream-function or pressure

field) becomes far more symmetric. The resulting largest instantaneous closed contour in

the co-moving frame is shown in red in figure (7); if the flow were steady in that frame, the

fluid in this contour would be trapped and carried along with the eddy. For the region to

truly trap fluid, the eddy’s amplitude, length scale, shape, and translation speeds would all

have to remain constant. Figure (8) shows that this is not the case.

The relative vorticity zero contour, where ∇2η = 0, shown in black in figure (7), remains

nearly symmetric throughout the eddy lifetime, unlike the e-fold contour which was found to

have far greater variability. For this reason it was found that the automated eddy tracking

algorithm used in this monopole study was far more reliable when tracking the relative

vorticity extremum and the contour of zero relative vorticity than tracking the sea surface

height extremum and e-folding contour. Following Korotaev and Fedotov (1994), the inner

core of an anticyclonic eddy is defined here as the region containing negative relative vorticity,

while the outer ring is the surrounding region of positive relative vorticity.

For the initial Gaussian disturbance the e-fold contour of sea surface height and contour

of zero relative vorticity are identical but, as can be seen in figure (7), this is not the case

for the quasi-stable state. The height difference between the higher northwestern corner of

the contour of zero relative vorticity and the lower southeastern corner require a net fluid

transport to the southwest, which is responsible for the equatorward meridional deflection

of this northern hemisphere anticyclonic eddy. Note that if we defined the eddy by contours
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of constant sea-surface height there could be no net meridional transport across the eddy

because the net transport is
∫ b

a
ηx dx = η(b)− η(a), the difference of which is zero.

b. Meridional and Zonal Propagation Speeds

The zonal speeds of the isolated eddies in the quasi-stable regime were found to be

dependent on the eddy amplitude such that larger amplitude eddies propagate significantly

faster than smaller amplitude eddies, as shown in figure (9). This is qualitatively consistent

with the observed eddies, for which the eddies with largest 1/3 amplitudes propagate about

20% faster than the eddies with the 1/3 smallest amplitudes Chelton et al. (2011). See

figure (19) and (20) and the related discussion in section 4 below. Figure (9) also shows mild

dependence on eddy length scale with smaller eddies propagating slightly more slowly. In

general then, eddies larger in both amplitude and length scale propagate faster than eddies

with small amplitude and length scale. The least-squares fit to the inverse amplitude was

found to be cx(A) = 5.3A−1 − 4.4 cm/s. This is suggestive of a lower bound asymptote at

−4.4 cm/s, which is close to the linear long wave speed of 4.7 cm/s.

That the zonal speed of the eddies is slower than the linear long wave speed is consistent

with previous experiments. The linear model considered in Flierl (1977) suggests that this

should be the case at least for linearized Gaussians. In the case of the nonlinear model

considered here, this is also consistent with the notion of ‘wave drag’ caused by the excitation

of Rossby waves forcing a slower propagation speed (Korotaev and Fedotov 1994).

The meridional speed of the eddy was similarly found to depend significantly on the ampli-

tude of the eddy, as shown in figure (9); the meridional speed decreases with increasing ampli-
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tude. The least-squares fit to the inverse amplitude was found to be cy(A) = −3.0A−1−0.19

cm/s. Just as with the zonal propagation speed, there appears to be a weak dependence

on the length scale of the eddy with meridional speed decreasing with increasing amplitude.

However, unlike the zonal propagation speed, figure (9) shows the smaller amplitude eddies

exceed the maximum meridional Rossby wave group velocity. In order to obtain reliable

meridional speeds, data points with amplitudes less than 2.0 cm were discarded because

it was found that zonally propagating Rossby waves left over from the initialization and

adjustment periods were interacting by catching up with the eddies (because their zonal

propagation speed decreases as they evolve) and dramatically changing the meridional de-

flection.

Assuming that cx(A) asymptotes to the linear long wave speed of 4.7 cm/s and then

dividing the least-squares fit regression coefficient (5.3) by this value, reveals an amplitude

scale of approximately 1.1 centimeters. This scale is suggestive of NQG = D
β0L2

R√
gD

, the height

scale that arises when all coefficients of equation (1) are forced to unity (rather than choosing

a preferred scale such as N0 = 10 cm as we have done, which results in NQG = 1.3 cm).

Given the observation that the linear long wave speed of β0L
2
R appears to be a lower bound

asymptote, this suggests that the propagation speed cx is dependent on the eddy amplitude

A by,

cx(A) = β0L
2
R

(
NQG

|A| − 1

)
. (3)

The corresponding meridional propagation would take the form,

cy(A) = −β0L
2
R

2

NQG

A
. (4)

These predicted dependencies are plotted in red on figure (9) and appear to mostly closely
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approximate the speed dependencies of the eddies with the longest length scales. To test the

hypothesis that equations (3) and (4) correctly describe the propagation speed dependency

of quasi-geostrophic eddies on eddy amplitude, the same experiment was run at latitude 35◦

where the linear long wave speed is 2.2 cm/s and NQG = 0.60 cm. The results are shown in

figure (10) and are consistent with the hypothesis.

The small amplitude limits of equations (3) and (4) result in seemingly nonsensical values.

However, it is important to note that these results are for coherent, identified, eddy features

for which the length scale is also decreasing. The simultaneous decrease in amplitude and

length scale keeps the eddies nonlinear by maintaining relatively large fluid velocities. Be-

cause the length scales are also small in this limit, it is not clear exactly what limiting speed

should be expected.

c. Trapped Fluid Conservation Properties

If the fluid rotational speeds U in the eddy exceed its translation speed c, transforming

coordinates into the co-moving frame will result in closed streamlines within the eddy. The

outermost closed streamline bounds the region where no fluid can escape, if the flow in

the translating frame is steady. However, these quasi-stable eddies have slowly decaying

amplitude and length scales (figure 8). The region of trapped fluid and the amplitude both

decrease, meaning that the volume of trapped fluid actually decreases with time.

Conservation of potential vorticity for a fluid parcel has contributions from three terms:
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planetary vorticity, relative vorticity and vortex stretching.

d

dt

⎡
⎢⎢⎢⎣ β0y︸︷︷︸
planetary vorticity

+
g

f0
∇2η︸ ︷︷ ︸

relative vorticity

− f0
D
η︸︷︷︸

vortex stretching

⎤
⎥⎥⎥⎦ = 0 (5)

Figure 11 shows the relative contributions from each of the three terms in potential vorticity

conservation for a Gaussian initialized eddy with 15 cm amplitude and 80 km length scale.

In panel (a) of figure 11 the values are found by integrating the terms over the entire instan-

taneous region of trapped fluid at each time, and then dividing by its area. The trends for

the planetary vorticity, vortex stretching and total potential vorticity are the same for all

other eddies that reach the quasi-stable state.

Even though the region of trapped fluid changes in time, it is clear how the planetary and

vortex stretching terms should change for the average fluid parcel in the region. Because the

eddy has a southward component of propagation on a β-plane (y decreases), the contribution

from planetary vorticity decreases in time (βy decreases). The decay of the eddy’s amplitude

(η decreases) causes an increase in contribution from vortex stretching (−η increases). That

the contribution from relative vorticity remains nearly constant throughout the eddy lifetime

means that the eddy is maintaining a ratio between the negative relative vorticity from the

eddy core and the positive relative vorticity in the outer ring; see the upper right panel of

figure (7).

Energy can be divided into two terms, the kinetic energy, g2

f2
0
(η2x + η2y), and the potential

energy, η2. Figure 11 (b) shows decreasing contributions of both kinetic and potential energy

as the eddy evolves. The initial ratios of kinetic energy to potential energy depend on the

initial conditions. For example, the 80 km, 15 cm eddy considered in figure 11 (b) is initially

dominated by potential energy, while a 40 km, 10 cm eddy is initially dominated by kinetic
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energy. Despite the partition differences for the two eddies, both display similar evolution

characteristics, with the average energy per fluid parcel decreasing over time. This trend is

similar to that described by Korotaev and Fedotov (1994) and Korotaev (1997) who suggest

that this may be due to the radiation of energy by Rossby waves.

In order to investigate the advective properties of the eddies, both a passive tracer and

floats were added to the model. The passive tracer, W (x, y, t), is a scalar field with no

sources or sinks initialized with the value of its initial x position and then allowed to evolve

with the equation,

∂W

∂t
+ u

∂W

∂x
+ v

∂W

∂y
= 0.

In addition to the passive tracer, floats were initialized with positions at each grid cell. The

float positions are solved by estimating the velocity field at each time step using bilinear

interpolation. The fates of the tracer field and floats over the lifetime of a westward prop-

agating monopole are investigated separately for the eddy core and the eddy ring in the

following subsections.

1) Eddy Core

We consider the eddy core first (recall that this is the region whose outer boundary is

defined as the zero relative vorticity contour where ∇2η = 0). Fluid must be entrained,

exactly trapped, lost, or some combination of entrainment and loss.

Can a new parcel of fluid be entrained in the eddy core? Recall that the eddy core for an

anticyclonic eddy is a region of positive sea surface height and negative relative vorticity and

consider what it would take for a fluid parcel with no height perturbation and no relative
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vorticity to enter the eddy core. In order to join the eddy core, the fluid parcel must increase

its height, and therefore decrease its vortex stretching contribution to the total potential

vorticity. To balance this decrease in vortex stretching the particle must come from 35

kilometers north of the eddy for every one centimeter increase in height. In addition to

the decrease in potential vorticity from vortex stretching, the particle must also decrease its

relative vorticity from zero to become negative. If we consider the eddy at the instant shown

in figure (7) where the contour of zero relative vorticity is at roughly 4 cm, this would mean

that, for a parcel of fluid to even reach the boundary of the core, it must be displaced from its

original rest location 140 km north of the eddy. But, the eddy’s radial length scale is much

less than 140 km and owing the effect of the β-gyre, the eddy is propagating southwestward.

We must therefore conclude that a new fluid parcel will not be entrained in the eddy core.

Exactly this effect can be seen in the x-tracer panel in figure (7) where on day 675 the eddy

core still only contains fluid initially trapped within a region centered at (x, y) = (0, 0) when

the eddy was formed.

Do fluid parcels on the eddy core boundary remain on the boundary? For particles to

remain on the ∇2η = 0 contour, the fluid flow must be tangential to the contour, there can

be no normal flow. To conserve potential vorticity (5), these particles must therefore obey

β0
dy

dt
=

f0
D

dη

dt
(6)

throughout their lifetimes. During the time it takes a parcel of fluid to circulate once around

the core, the condition is quite reasonable to meet. As computed before, this only requires

a particle to decrease its height by one centimeter for every 35 kilometers of meridional

displacement. Using figure (7), we can estimate the north-south extent of the zero contour
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of relative vorticity to be 100 km, and so our condition would require that the northern

edge of the contour of zero relative vorticity be roughly 3 cm higher than the southern edge.

Figure (7) shows that this is indeed the approximate difference. We can also use equation

(6) with the parameters from this problem to compute a condition relating the meridional

propagation to the amplitude decay and we find that

9.0
s

yr
· dy
dt

=
dη

dt
. (7)

This suggests that that meridional speed shown in figure (8) of approximately 0.5 cm/s,

must be offset by a height decay rate of approximately 4.5 cm/yr if a parcel is to remain on

the zero contour. The observed height decay rate falls short of meeting this condition and

instead has a decay rate closer to 3 cm/yr. While these are estimates, the values computed

for figure (8) are from the eddy maximum, and our condition (7) is for the ∇2η = 0 contour,

they are qualitatively correct. Such a particle therefore does not conserve potential vorticity

and the assumption that particles remain on the contour of zero relative vorticity must be

incorrect. In order to conserve potential vorticity (5) and account for this difference, this

implies that particles must be increasing their relative vorticity and crossing the boundary

of zero relative vorticity. The eddy core cannot entrain fluid and because condition (7) is

not exactly met, then it does not trap the fluid that defines its boundary, so the eddy core

must be shedding fluid (or, equivalently, the boundary of the core is shrinking).

We can validate our entrainment conclusion with the model by considering the floats

within the eddy core on day 675 and asking where they were on day zero. This can be

seen in figure (12) where a histogram of the initial x and y positions of the fluid shows the

fluid in the eddy core consists entirely of a subset of approximately the inner 50 km of the
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original fluid trapped in the core during the initialization of the 80 km eddy. The top panel

of figure 13 shows these original float locations as red dots on top of the sea surface height

for day 675 and the bottom panel shows the results of allowing a passive tracer to advect

with the flow. The individual red dots are not discernible because they are all clustered

tightly within the core of the eddy at its initial center location of (x, y) = (0, 0). The fluid

was given a meridionally uniform color for each location in x on day zero according to the

rainbow palette at the bottom of the figure.

Having established that no new fluid is entrained within the propagating eddy core defined

by the contour of zero relative vorticity, we can more easily interpret figure 11 (c). Because

the total potential vorticity becomes more negative on average, this implies that the eddy

core is shedding fluid with higher potential vorticity.

Figure 14 shows the history of a float initially located in the eddy core which remains in

the eddy core for all 730 days of the model run. The oscillations in the individual contribu-

tions of the potential vorticity occur as the float circulates around the eddy core. The parcel

of fluid tracked by the float finds that the total potential vorticity remained conserved, but

the surface height adjusted to compensate for the loss of planetary vorticity from the equator-

ward displacement of the eddy while the relative vorticity changed very little. The potential

vorticity for the fluid parcel is within 0.1% of its initial value after 730 days. This is excellent

confirmation that the numerical scheme is accurate because individual contributions to the

potential vorticity vary by well over 50%.
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2) Eddy Ring

The eddy ring consists of fluid with positive relative vorticity, although with magnitude

much smaller than the eddy core. The same possibilities for trapped fluid exist as with the

core: fluid is either entrained, exactly trapped, lost, or some combination of entrainment

and loss.

At the very least, the eddy ring will be collecting fluid shed from the shrinking boundary

of the eddy core. In addition, however, the eddy ring will also entrain new surrounding fluid.

An increase in height, and therefore a compensated increase in relative vorticity, is exactly

what a fluid parcel requires to join the eddy ring. This can be seen from the histograms of

the original locations of floats found in the ring on day 675, shown in figure (15), where it

is clear that the eddy ring has collected (and also therefore released) fluid throughout its

lifetime. These original float locations are shown in the top panel of figure 13 as blue dots

on top of the sea surface height on day 675.

The average potential vorticity composition within the eddy ring over time for the 80 km,

15 cm eddy is shown in figure 11 (e). The contribution from planetary vorticity decreases and

the vortex stretching contribution increases; again, both of these are obvious. The relative

vorticity remains flat or mildly increases for all eddies. The average potential vorticity trend

always decreases. This is because the ring is shedding fluid with higher potential vorticity

and acquiring new fluid with lower potential vorticity, as we can see from the tracer in figure

13 and the histograms in figure 15.

Figure (16) shows the potential vorticity composition for a float that began in the eddy

core, crossed to the eddy ring (all while circulating around the eddy center causing the
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oscillations) and was eventually ejected from the eddy. Notice that the potential vorticity

for this float does not remain perfectly constant. While most floats throughout the domain

do conserve potential vorticity well, we find that floats crossing the relative vorticity zero

contour often undergo rapid changes in potential vorticity while crossing the boundary.

After examining a number of individual floats, we believe that this is an artifact of the

strong gradients of u and v that are poorly resolved with bilinear interpolation, which also

typically coincide with regions of strong potential vorticity gradients.

Although the linear model is generally associated with the assumption that fluid parcel

advection is negligible, the Lagrangian motion implied by the geostrophic velocity field can

still be computed ex post facto. The resulting motion is equivalent to the Stokes drift

resulting from the interaction of two or more Rossby waves with the same frequency (not

shown here). This can be seen in figure (17) which shows the same tracer fluid experiment

seen in the bottom panel of figure (13), but using linear dynamics (when β−1 = 0). The

resulting fluid transports are still valid provided that the advection of relative vorticity

is small compared to the other terms in the potential vorticity equation (5), even if fluid

parcels are advected finite distance. However, because the dynamics substantially change

with the inclusion of the advection of relative vorticity, as seen in figure (1), we know that

this condition is violated and the advection of relative vorticity is not negligible. Even with

this inconsistent assumption, although fluid is transported over 1000 kilometers, it still pales

in comparison to the distance and efficiency with which fluid is transported by the coherent

eddy in figure 13.
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4. Discussion

Although it may seem surprising that the quasi-stable state of isolated nonlinear eddies

identified here has not previously been identified, previous numerical solutions of isolated

quasi-geostrophic eddies, such as McWilliams and Flierl (1979), have typically been restricted

to times roughly as long the adjustment period identified here, likely owing to computational

resource limitations. The numerical study of Sutyrin et al. (1994) and Lam and Dritschel

(2001) did consider times longer than the adjustment period, but not significantly longer

and for a smaller range of scales. Only by considering times after the adjustment period and

discarding eddies that failed to reach the quasi-stable state, do we find clear relationships

between eddy amplitude and propagation speed, as in figure 9. The empirical equations

(3) and (4) appear to describe this relationship accurately; an analytical derivation of these

equations would likely provide additional insight into the nature of the quasi-stable state.

Previous studies have attempted to formulate analytical estimates of the westward prop-

agation speed of quasi-geostrophic vortices by determining the speed of the center of mass

(McWilliams and Flierl 1979; Cushman-Roisin et al. 1990). However, the center of mass

is determined by integration over the entire domain (rather than a region localized around

the eddy like the contour of zero relative vorticity used here) and doesn’t appear to corre-

late with the speed of the tracked eddies. The approaches found in Korotaev (1997) and

Nycander (2001) use the loss of energy through Rossby wave radiation to estimate the prop-

agation speeds and may apply during the adjustment period, but, based on comparisons

to our numerical results, do not appear to apply to the quasi-stable state. The results of

the analytical study Reznik et al. (2000) are only valid for time periods extending into the
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adjustment period where the eddy height decay rate is at its strongest and may explain why

their results significantly underestimate the eddy’s lifetime.

Although the isolated eddies in section 3 and the basin of eddies in section 2b are both

governed by the same equation (1), it is not necessarily true that the properties of one

experiment applies to the other. First, is the shape of nonlinear zonal frequency-wavenumber

spectra in figure (3) explained primarily by eddy-eddy interaction, or is it already represented

in the monopole experiment? Second, does the eddy speed dependence on amplitude and

length scale as shown in figure (9) also exist for the eddy seeding experiment?

In the first experiment, the zonal frequency-wavenumber spectra in figure (3) were re-

peated for isolated monopoles and are shown in figure 18. The spectra were averaged over

multiple y slices to capture the power from the whole domain. The spectra of the isolated

eddy and eddy basin evolved with linear dynamics appear nearly identical, and the spec-

tra of the nonlinear experiments are also quite similar, but with two noticeable differences.

First, the spectrum of the isolated eddy experiment shows a somewhat more distinct spur

of power following the linear Rossby wave zonal dispersion relation than is found in the

spectrum from the eddy seeding experiment. This is explained by the observation that the

Rossby waves shed from the initial disturbance is still largely obeying linear dynamics in the

monopole experiment whereas in the seeding experiment there is relatively little free space

between eddies – and therefore less room for features that obey linear dynamics. Second,

the spectrum from the nonlinear eddy seeding experiment shows relatively less power at

higher wavenumbers than in the monopole experiment. This stronger shift in concentration

of power from the larger wavenumbers to the smaller wavenumbers likely arises from the

eddy-eddy interaction introduced in the eddy seeding experiment. This is consistent with
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the up-scale energy cascade of quasi-geostrophic turbulence (Vallis 2006).

In the second experiment it is shown that the eddy speed dependence on amplitude and

length scale shown for isolated eddies in figure (9), also exists in the eddy seed experiment as

well as the altimeter observations Chelton et al. (2011). Figure (19) shows the tracked eddies

from the nonlinear eddy seeding experiment separated by amplitude and length scale. Just

as for the isolated monopoles, propagation speed is strongly dependent on eddy amplitude

and weakly dependent on eddy length scale. Figure (20) shows that this relationship also

holds for the altimeter observations.

5. Conclusions

The long term coherence of eddies observed and tracked by satellite altimetry more

closely matches the evolution of isolated eddies in the nonlinear than in the linear model.

Further, the spectral properties of the eddies observed by satellite altimetry are in excellent

agreement with the spectrum from the basin scale eddy seeding experiment for the nonlinear

quasi-geostrophic model. Taken together, we find this to be convincing evidence that the

signals observed in the high-resolution satellite observations (Chelton et al. 2007, 2011)

represent eddies obeying nonlinear dynamics.

In an effort to understand the characteristics of quasi-geostrophic eddies, we conducted

a study of the long-term evolution of isolated eddies. Gaussian initialized eddies have three

distinct regimes in their evolution, of which only two have previously been characterized.

What was once believed to be a quasi-stable state turns out to be better characterized

as an adjustment period and only at lifetimes of approximately 15(β0LR)
−1 does a truly
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quasi-stable state emerge.

The quasi-stable state is characterized by zonal and meridional propagation speeds strongly

dependent on the inverse amplitude of the eddy, with larger amplitudes tending towards the

long wave limit of linear Rossby waves. All propagation speeds for the monopole experi-

ments are slower than this limit and this is thought to be an effect of the wave drag caused

by the excitation of Rossby waves. This same speed dependence was found in the eddy

seeding experiment as well as the enhanced eddy resolving observations (Chelton et al. 2007,

2011) which found zonal propagation speeds to be strongly dependent on amplitude and

weakly dependent on length scale. However, the nonlinear model has a smaller variability

in the distribution of eddy speeds compared with the observations and we believe that this

is a limitation of quasi-geostrophic theory or the neglect of the effects of variations in the

background mean flow on the potential vorticity gradient.

The quasi-geostrophic eddies were shown to transport a substantial amount of fluid over

long distances. At any point during an eddy’s lifetime, 100% of the fluid in the core is from

the initialization location, where the core is defined as the region interior to the zero contour

of the relative vorticity. This is in contrast to the instantaneously defined trapped fluid

region, determined by transforming into coordinates co-moving with the eddy, which does

not well describe the boundary of the retained fluid. In this sense the core of the eddy is a

‘perfect’ transporter of fluid and carries the same parcels of fluid for thousands of kilometers

during its slow decay. The ring of fluid with opposite signed relative vorticity fluid around

the eddy is approximately bounded by the zero contour of relative vorticity and the region

of trapped fluid, but transports fluid in a very different manner. The ring entrains and sheds

fluid throughout its lifetime, moving some parcels of fluid hundreds of kilometers and others
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thousands of kilometers.

In light of our conclusion that the satellite observations are not Rossby waves, these

transport properties have significant implications. Linear Rossby waves cannot transport

fluid nearly as effectively and therefore most energy transferred is in the form of kinetic and

potential energy. The nonlinear eddies, in contrast, are capable of transporting relatively

large quantities of fluid and therefore can carry energy in the form of heat, in addition to the

kinetic and potential energy carried by wave-fluctuations, as well as other material properties

and dissolved materials that may have biological importance.

A number of issues regarding the individual properties of quasi-geostrophic eddies still

need to be resolved. Although an empirical relationship between the propagation speed

and the eddy amplitude was found, a satisfactory analytical theory for this relationship

has not yet been developed. Further, we believe that the ideas of radiative Rossby wave

energy loss should be applicable outside the adjustment period explored in Korotaev (1997)

and Nycander (2001). Analytical formulations for the relationships between eddy amplitude

decay rates and propagation speed may be possible.
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List of Figures

1 The evolution of an initially Gaussian sea surface height of amplitude 15 cm

and length scale 80 km. The first column is the linear form of equation (1)

with β−1 = 0 while the second column uses the value appropriate for the first

baroclinic mode at latitude 24, β−1 = 7.5. The contours are drawn for every

two centimeters of height at odd values (e.g. −1 cm, 1 cm, 3 cm, etc.) and a

thicker contour is drawn at 0 cm to emphasize the interference pattern. The

thick black line is the path of the sea surface height maximum. 41

2 Sea surface height 13 years into the eddy seeding experiment. The left panel

shows the evolved state using the linear equation, while the right panel evolved

state using the nonlinear equation. Both experiments were seeded with the

exact same Gaussian eddies at the same times and locations. The domain

shown is a subset of the entire modeled domain. 42

3 Zonal frequency-wavenumber spectra for sea surface height of the linear model

(left) and the nonlinear model (right) from 110 years of the eddy seeding

experiment. 25 neighboring latitude bands were ensemble averaged. The

black lines are the maximum (meridional wavenumber l = 0) Rossby wave

zonal dispersion relation (curved) and its nondispersive limit (linear). 43
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4 Zonal frequency-wavenumber spectra for sea surface height from the merged

TOPEX/POSEIDON-ERS satellite altimetry data along 24◦ N in the western

subtropical Pacific Ocean. The solid line is computed from the radon trans-

formation. The three dispersion relations shown are from standard Rossby

wave theory, the rough bottom topography theory of Tailleux and McWilliams

(2001) and the vertical shear-modified theory of Killworth et al. (1997) ex-

tended to the case of nonzero zonal wavenumber (Fu and Chelton 2001), in

order of increasing frequency along the lefthand side of the plot. 44

5 Meridional deflection of the cyclonic (upper panels) and anticyclonic (lower

panels) eddies. The linear model (a) shows no preference for equatorward

or poleward deflection, while the quasi-geostrophic model (b) shows cyclones

have a poleward preference and anticyclones an equatorward preference. The

satellite observations (c) show a pattern similar to quasi-geostrophic dynam-

ics, but with the mean propagation direction of the combined cyclonic and

anticyclonic eddies rotated slightly equatorward 45

6 Distributions of eddy speeds from the nonlinear model normalized by the

nondispersive Rossby wave phase speed. From top to bottom: linear model,

nonlinear model, altimeter observations. The altimeter observations include

eddies in the eastern subtropical Pacific between 20◦ - 35◦ N and 165◦ - 110◦

W. 46
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7 Contours (color shading) of height, relative vorticity, zonal-coordinate tracer,

and fluid velocity for a Gaussian initialized 15 cm height, 80 km eddy on day

675 of its evolution. The e-fold contour (maximum height divided by e) is

shown in cyan. The instantaneous closed height contour in the co-moving

frame (red) and the contour of zero relative vorticity (black) are also shown. 47

8 Time evolution of four properties for a Gaussian eddy initialized with 15 cm

amplitude and 80 km length scale. Clockwise from the upper-left: length scale

decay rate, height decay rate, meridional speed and zonal speed. The β-gyre

formation (initialization) occurs for times less than 11 days and is therefore

not well described in this figure. All four properties show the adjustment

period of roughly 200 days before the eddy settles into the quasi-stable state.

Note that the speed plots are shown with a different vertical axis and the

meridional speed is nearly an order of magnitude slower than the zonal speed. 48
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9 The top two plots show eddy speed versus amplitude. The amplitude, speed

and length scale are plotted for each day of the eddy’s evolution starting at

day 200 until day 730, or until the eddy can no longer be tracked. In total,

5139 points are plotted. The black lines are the linear (inverse amplitude) best

fit line to these points, cx(A) = 5.5A−1−4.4 cm/s and cy(A) = −3.0A−1−0.19

cm/s while the red lines are from equations (3) and (4). Points are colored with

the eddy length scale (in km), suggesting a weak speed dependence on length

scale. The dashed grey lines are the maximum group velocities of Rossby

waves in the zonal and meridional directions. The bottom two plots show the

deviation of the eddy speed from the predicted relationship normalized by the

variability, suggesting weak speed dependence on length scale. The results

were filtered to only include isolated eddies in the quasi-stable state. 49

10 Propagation speed of eddy versus eddy amplitude. Same as figure (9), but at

latitude 35◦. The zonal and meridional inverse amplitude best fits lines are

cx(A) = 1.0A−1 − 2.0 cm/s and cy(A) = −0.71A−1 − 0.032 cm/s, respectively. 50

11 Area-mean potential vorticity and energy within the entire trapped fluid re-

gion, the eddy core and the eddy ring of an 80 km, 15 cm Gaussian initialized

eddy. The trends are the same for the other quasi-stable eddies. 51

12 Histograms of the initial x-position (top panel) and the initial y-position (bot-

tom panel) of the fluid on day 675 in the core of an 80 km, 15 cm Gaussian

initialized eddy. At this time, the eddy extremum is located at x = −2247

km and y = −330 km. Thus, the core contains only fluid from its starting

point more than 2000 km away. 52
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13 Location of fluid advected on day 675. The top panel shows sea surface height

with the instantaneous “trapped fluid” contour (red) and relative vorticity

zero contour (black). Blue circles show the day zero location of the floats in

the eddy ring, while red circles show the location of floats in the eddy core.

The bottom panel shows a passive tracer equal to the initial (day 0) value of

the zonal coordinate. 53

14 Contributions to the total potential vorticity for a float initially at x = 29 km

and y = 26 km. The float remains inside the core of the eddy for all 730 days.

On day 730 the float was located at x = −2400 km and y = −389 km. 54

15 Same as figure 12 except histograms of the initial x-position (a) and the initial

y-position (b) of the fluid in the ring on day 675. Thus, the ring contains a

mixture of fluid from throughout its lifetime. 55

16 Contributions to the total potential vorticity for a float initially at x = 60 km

and y = 26 km. The float begins in the eddy core, crosses to the ring, and is

eventually lost by the eddy. On day 730, the float was located at x = −1113

km and y = −227 km. 56

17 Passive tracer on day 675 advected by an initially Gaussian disturbance evolved

with linear dynamics. The contours of zero sea-surface height are shown in

black. This figure is the same as the bottom panel of figure 13, but with linear

dynamics. 57
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18 Zonal frequency-wavenumber spectra for sea surface height of the linear model

(left) and the nonlinear model (right) from the 730 evolution of an initially

Gaussian sea surface height of amplitude 15 cm and length scale 80 km. The

black lines are the maximum (meridional wavenumber l = 0) Rossby wave

zonal dispersion relation (curved) and its nondispersive limit (linear). 58

19 Distributions of eddy speeds from the nonlinear model normalized by the

nondisperisve Rossby wave phase speed separated into a) the eddies with

smallest 1/3 amplitudes; b) largest 1/3 amplitudes; c) smallest 1/3 length

scales; and d) largest 1/3 length scales. 59

20 The same as figure 19, but for the altimeter observations of eddies in the

eastern subtropical Pacific between 20◦ - 35◦ N and 165◦ - 110◦ W. 60
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Fig. 1. The evolution of an initially Gaussian sea surface height of amplitude 15 cm and
length scale 80 km. The first column is the linear form of equation (1) with β−1 = 0 while
the second column uses the value appropriate for the first baroclinic mode at latitude 24,
β−1 = 7.5. The contours are drawn for every two centimeters of height at odd values (e.g. −1
cm, 1 cm, 3 cm, etc.) and a thicker contour is drawn at 0 cm to emphasize the interference
pattern. The thick black line is the path of the sea surface height maximum.
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Fig. 2. Sea surface height 13 years into the eddy seeding experiment. The left panel shows
the evolved state using the linear equation, while the right panel evolved state using the
nonlinear equation. Both experiments were seeded with the exact same Gaussian eddies at
the same times and locations. The domain shown is a subset of the entire modeled domain.
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Fig. 3. Zonal frequency-wavenumber spectra for sea surface height of the linear model
(left) and the nonlinear model (right) from 110 years of the eddy seeding experiment. 25
neighboring latitude bands were ensemble averaged. The black lines are the maximum
(meridional wavenumber l = 0) Rossby wave zonal dispersion relation (curved) and its
nondispersive limit (linear).
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Fig. 4. Zonal frequency-wavenumber spectra for sea surface height from the merged
TOPEX/POSEIDON-ERS satellite altimetry data along 24◦ N in the western subtropi-
cal Pacific Ocean. The solid line is computed from the radon transformation. The three
dispersion relations shown are from standard Rossby wave theory, the rough bottom topog-
raphy theory of Tailleux and McWilliams (2001) and the vertical shear-modified theory of
Killworth et al. (1997) extended to the case of nonzero zonal wavenumber (Fu and Chelton
2001), in order of increasing frequency along the lefthand side of the plot.
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a)  Linear b)  Quasigeostrophic c)  Global Observations

Fig. 5. Meridional deflection of the cyclonic (upper panels) and anticyclonic (lower panels)
eddies. The linear model (a) shows no preference for equatorward or poleward deflection,
while the quasi-geostrophic model (b) shows cyclones have a poleward preference and anti-
cyclones an equatorward preference. The satellite observations (c) show a pattern similar
to quasi-geostrophic dynamics, but with the mean propagation direction of the combined
cyclonic and anticyclonic eddies rotated slightly equatorward
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a)

b)

c)

Fig. 6. Distributions of eddy speeds from the nonlinear model normalized by the nondis-
persive Rossby wave phase speed. From top to bottom: linear model, nonlinear model,
altimeter observations. The altimeter observations include eddies in the eastern subtropical
Pacific between 20◦ - 35◦ N and 165◦ - 110◦ W.
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Fig. 7. Contours (color shading) of height, relative vorticity, zonal-coordinate tracer, and
fluid velocity for a Gaussian initialized 15 cm height, 80 km eddy on day 675 of its evolution.
The e-fold contour (maximum height divided by e) is shown in cyan. The instantaneous
closed height contour in the co-moving frame (red) and the contour of zero relative vorticity
(black) are also shown.
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Fig. 8. Time evolution of four properties for a Gaussian eddy initialized with 15 cm am-
plitude and 80 km length scale. Clockwise from the upper-left: length scale decay rate,
height decay rate, meridional speed and zonal speed. The β-gyre formation (initialization)
occurs for times less than 11 days and is therefore not well described in this figure. All four
properties show the adjustment period of roughly 200 days before the eddy settles into the
quasi-stable state. Note that the speed plots are shown with a different vertical axis and the
meridional speed is nearly an order of magnitude slower than the zonal speed.
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Fig. 9. The top two plots show eddy speed versus amplitude. The amplitude, speed and
length scale are plotted for each day of the eddy’s evolution starting at day 200 until day
730, or until the eddy can no longer be tracked. In total, 5139 points are plotted. The black
lines are the linear (inverse amplitude) best fit line to these points, cx(A) = 5.5A−1 − 4.4
cm/s and cy(A) = −3.0A−1 − 0.19 cm/s while the red lines are from equations (3) and (4).
Points are colored with the eddy length scale (in km), suggesting a weak speed dependence
on length scale. The dashed grey lines are the maximum group velocities of Rossby waves in
the zonal and meridional directions. The bottom two plots show the deviation of the eddy
speed from the predicted relationship normalized by the variability, suggesting weak speed
dependence on length scale. The results were filtered to only include isolated eddies in the
quasi-stable state.

49



0 5 10 15 20

−2

−1.5

−1

−0.5

0

Amplitude (cm)

Z
on

al
 S

pe
ed

 (
cm

/s
)

40 60 80 100 120

−2

0

2

Length Scale (km)

D
ev

ia
tio

n

0 5 10 15 20

−0.6

−0.4

−0.2

0

0.2

Amplitude (cm)

M
er

id
io

na
l S

pe
ed

 (
cm

/s
)

 

 

40

60

80

100

120

40 60 80 100 120

−4

−2

0

Length Scale (km)

D
ev

ia
tio

n

Fig. 10. Propagation speed of eddy versus eddy amplitude. Same as figure (9), but at
latitude 35◦. The zonal and meridional inverse amplitude best fits lines are cx(A) = 1.0A−1−
2.0 cm/s and cy(A) = −0.71A−1 − 0.032 cm/s, respectively.
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Fig. 11. Area-mean potential vorticity and energy within the entire trapped fluid region,
the eddy core and the eddy ring of an 80 km, 15 cm Gaussian initialized eddy. The trends
are the same for the other quasi-stable eddies.
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Fig. 12. Histograms of the initial x-position (top panel) and the initial y-position (bottom
panel) of the fluid on day 675 in the core of an 80 km, 15 cm Gaussian initialized eddy. At
this time, the eddy extremum is located at x = −2247 km and y = −330 km. Thus, the
core contains only fluid from its starting point more than 2000 km away.
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Fig. 13. Location of fluid advected on day 675. The top panel shows sea surface height with
the instantaneous “trapped fluid” contour (red) and relative vorticity zero contour (black).
Blue circles show the day zero location of the floats in the eddy ring, while red circles show
the location of floats in the eddy core. The bottom panel shows a passive tracer equal to
the initial (day 0) value of the zonal coordinate.
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Fig. 14. Contributions to the total potential vorticity for a float initially at x = 29 km and
y = 26 km. The float remains inside the core of the eddy for all 730 days. On day 730 the
float was located at x = −2400 km and y = −389 km.
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Fig. 15. Same as figure 12 except histograms of the initial x-position (a) and the initial
y-position (b) of the fluid in the ring on day 675. Thus, the ring contains a mixture of fluid
from throughout its lifetime.
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Fig. 16. Contributions to the total potential vorticity for a float initially at x = 60 km and
y = 26 km. The float begins in the eddy core, crosses to the ring, and is eventually lost by
the eddy. On day 730, the float was located at x = −1113 km and y = −227 km.
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Fig. 17. Passive tracer on day 675 advected by an initially Gaussian disturbance evolved
with linear dynamics. The contours of zero sea-surface height are shown in black. This figure
is the same as the bottom panel of figure 13, but with linear dynamics.
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Fig. 18. Zonal frequency-wavenumber spectra for sea surface height of the linear model
(left) and the nonlinear model (right) from the 730 evolution of an initially Gaussian sea
surface height of amplitude 15 cm and length scale 80 km. The black lines are the maximum
(meridional wavenumber l = 0) Rossby wave zonal dispersion relation (curved) and its
nondispersive limit (linear).
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Fig. 19. Distributions of eddy speeds from the nonlinear model normalized by the nondis-
perisve Rossby wave phase speed separated into a) the eddies with smallest 1/3 amplitudes;
b) largest 1/3 amplitudes; c) smallest 1/3 length scales; and d) largest 1/3 length scales.
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Fig. 20. The same as figure 19, but for the altimeter observations of eddies in the eastern
subtropical Pacific between 20◦ - 35◦ N and 165◦ - 110◦ W.
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