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We propose a new class of univariate non-stationary time series models, using the framework of modulated time series, which
is appropriate for the analysis of rapidly evolving time series as well as time series observations with missing data. We extend
our techniques to a class of bivariate time series that are isotropic. Exact inference is often not computationally viable for
time series analysis, and so we propose an estimation method based on the Whittle likelihood, a commonly adopted pseudo-
likelihood. Our inference procedure is shown to be consistent under standard assumptions, as well as having considerably
lower computational cost than exact likelihood in general. We show the utility of this framework for the analysis of drifting
instruments, an analysis that is key to characterizing global ocean circulation and therefore also for decadal to century-scale
climate understanding.
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1. INTRODUCTION

This article introduces a new family of rapidly evolving time series models, inspired by real-data applications,
and then develops the appropriate analysis tools for their computationally efficient and consistent inference. Sta-
tistical models for time series observations are usually described by their expectations and covariance structure.
Classic families of covariance structure correspond to stationary covariances, governed only by the temporal lags
between observed values of the process. The assumption of stationarity greatly simplifies analysis, as it renders the
covariance structure homogeneous across time, and this motivates averaging for estimation. Unfortunately, most
often, this homogeneous time structure is inadequate as a model for real-world applications and does not reflect
the variability of the observed time series.

To analyse non-stationary time series, the framework of locally stationary time series is standard
(Priestley, 1988; Dahlhaus, 1997). The idea is to allow for a time-varying spectral density. Parametric models for
the time-varying spectral density can be fitted via the use of local Fourier transforms, usually requiring a spectral
smoothness assumption. The concept of infill asymptotics developed by Dahlhaus (1997) is based on the idea that
a growing amount of data are obtained locally in time. Normally, for non-stationary time series analysis, there
is a bias–variance trade-off that occurs when selecting the length of an analysis window. Longer windows will
decrease variance but will simultaneously increase bias owing to the variation of the covariance function over
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the analysis window (Adak, 1998). In our case, we shall eliminate the bias, and this will enable us to use longer
time window lengths. For this purpose, we exploit the notion of a modulated process (Parzen, 1963; Priestley,
1965). A modulated process is a latent stationary process multiplied pointwise by a modulating function. If we
observe the modulating function, this framework allows us to define an expected sample autocovariance function,
despite the clear non-stationarity of the modulated process. This in turn allows us to introduce the Fourier trans-
form of the expected sample autocovariance function of the modulated process, which is equal to its expected
periodogram. Through examining the expected periodogram, the properties controlling the latent random process
may be inferred even when the modulating function changes very rapidly.

The standard class of modulated processes is that of asymptotically stationary modulated processes (Parzen,
1963; Toloi and Morettin, 1989; Jiang and Hui, 2004). There, the autocovariance of the modulating function
converges to a fixed function, which is too restrictive for our real-world application. We introduce a more general
class, which we call modulated processes with a significant correlation contribution. This more flexible model will
still allow us to infer the parameters of the driving process using likelihood-based methodologies. An alternative
approach might be to simply divide the observed process by the known modulating sequence to recover the latent
process and then perform inference directly on the recovered latent process. However, this is not possible in
general, as the modulating function may contain zeros, or the observed process may in fact be an aggregation of
different processes, as in the case in the real-world application that motivated us to develop this model class.

Anticipating our application to oceanographic surface flow measurements, we present a novel generalization of
modulated processes for isotropic bivariate processes, or equivalently proper complex-valued processes (Schreier
and Scharf, 2010). The wealth of possible structure in multi-variate processes is considerable in general. Inherent
documented challenges in modelling include producing valid joint representations (Tong 1973, 1974; Priestley and
Tong, 1973). This problem does not apply here, as we shall modulate both stationary processes under consideration
simultaneously, thus automatically removing such problems.

Having set up our model of modulated processes with a significant correlation contribution, we show how
a modified version of a frequency-domain likelihood allows us to consistently estimate parameters with a high
degree of computational efficiency. More specifically, the Whittle likelihood for stationary Gaussian processes is
an approximation of the exact likelihood that is asymptotically equivalent and can be computed in O.N logN/
elementary operations. We adapt this pseudo-likelihood to our class of models, making use of the expected peri-
odogram, and conserve the OP

!
N"1=2

"
convergence rate. We also conserve the O.N logN/ computational cost

in the minimization procedure. Exact likelihood for non-stationary time series, on the other hand, will in general
require more than O.N 2/ operations, owing to the need to manipulate large covariance matrices.

We apply this method to an important dataset measuring ocean currents. There are only a handful of observa-
tional platforms capable of providing continuous global coverage of the Earth’s oceans, and so it is critical that we
fully utilize these datasets to advance our understanding of the oceans and their impact on climate. One of these
studies is the Global Drifter Program (www.aoml.noaa.gov/phod/dac), consisting of freely drifting instruments, or
‘drifters’ (Lumpkin and Pazos, 2007). Figure 1(a) shows positions from multiple trajectories obtained from drifters
at or near the equator. From the positions of the trajectories, we may also calculate the velocities of the instru-
ments, and these velocity time series are useful measurements for understanding ocean dynamics. Depending on
the instrument, it may not be reasonable to model the velocity time series as locally stationary, as is assumed in
Sykulski et al. (2016c). In particular, for reasons to be discussed, regions near the equator are likelier to yield drifter
trajectories with highly non-stationary velocities where locally stationary modelling breaks down. Instead, to cap-
ture such rapid time-variability, we use a modulated stochastic process from our class of non-stationary models.
This model allows us to capture the rapid frequency modulation of oscillations known to geophysicists as ‘inertial
oscillations’. An example of a time series with such rapid frequency modulation can be seen in Figure 1(c).

We organize the article into the following sections. Section 2 reviews the model family of modulated processes,
the standard assumption of asymptotic stationarity associated with such processes, and introduces our generalized
class called modulated processes with a significant correlation contribution. This section also includes extensions
to bivariate processes. Section 3 describes a computationally efficient pseudo-likelihood estimation procedure. In
Section 4, we apply our methods to real-world oceanographic data and various numerical experiments; we also
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Figure 1. (a) The trajectories of the 200 drifters from the Global Drifter Program, analysed in Section 4.1.1, that exhibit the
greatest change in Coriolis frequency (f ) across 60 inertial cycles, as described in that section. (b) A segment of data of the
meridional (latitudinal) positions over time from drifter ID 43594. (c) A segment of data of the latitudinal velocities from this

drifter in centimetre per second. This figure is produced using the jLab toolbox (Lilly, 2016)

apply our methods to a simulated missing data problem. We establish consistency of our proposed procedure in
Section 5, under the assumption of significant correlation contribution, as well as standard assumptions on the
stationary process that is modulated. Finally, concluding remarks can be found in Section 6.

2. MODULATED TIME SERIES

In this article, we review and study modelling and inference methods for univariate and bivariate non-stationary
Gaussian processes. We have that the first moment of a univariate stochastic discrete Gaussian process ¹Xt W t 2
Nº, with index set N D ¹0; 1; 2; : : :º, is provided pointwise by

!X .t/ D E ¹Xtº ;

and the second-order structure is given by

cX .t1; t2/ D cov ¹Xt1 ; Xt2º ;

where moments are finite as a direct consequence of the Gaussianity of ¹Xtº. We shall assume throughout this
article that !X .t/ D 0. In practice, this may require us to subtract the sample mean from the observed series, or
more generally remove trends and seasonal components (Brockwell and Davis, 1991, chap. 1).

Second-order stationarity implies that the function cX .t; t C "/ does not depend on the index t and takes the
simplified form cX ."/. An alternative way to represent cX ."/, assuming it is absolutely summable, is via its
Fourier transform SX ."/, also known as the spectral density of ¹Xtº,

SX .!/ D
1

2#

1X
!D"1

cX ."/e
"i!! ; ! 2 Œ##;#$:

The spectral density SX .!/ is then a continuous function of !. The corresponding inversion formula is given for
all integer value " by

cX ."/ D
Z "

""
SX .!/e

i!!d!:
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A consequence of stationarity is that the quantities in question can be stably estimated by averaging in time
(Brockwell and Davis, 1991). If cX .t; tC "/ is not stationary, but is slowly varying in time, then it can be estimated
by dividing the observed data into multiple segments and performing inference on each segment (Adak, 1998).
This does not hold in settings where the time variation is too rapid. Our goal is to estimate cX .t; t C "/ in such
settings, in particular when a parametric specification is made for the function.

2.1. Classes of Modulated Processes

Modulation is a natural and simple method of producing a non-stationary process (Parzen, 1963). A univariate
modulated process is defined as follows.

Definition 1 (Modulated process). Let ¹Xt W t 2 Nº be a Gaussian, real-valued, zero-mean stationary process.
Let ¹gt W t 2 Nº be a given bounded real-valued deterministic sequence. Then a modulated process is defined as
one taking the form

QXt D gtXt (1)

at all time points t 2 N.

Herein we treat ¹gtº as a known deterministic signal. In our setting, the process ¹Xtº, which is referred to as
the latent process, is modelled through a finite set of parameters ! 2 ‚ $ Rd , where d is a positive integer and
‚ is the parameter space. Usually, our object of interest is ! , the particular values of parameters that generated
the observed realization. For example, if the latent process is an autoregressive process of order p, we then have
d D p C 1 if the mean is known (p autoregressive parameters and the variance of the innovations). We denote
the autocovariance function of the stationary zero-mean process ¹Xtº by cX ."/, or cX ." I!/ when we want to
make the dependence on ! explicit. Its Fourier transform, the spectral density, is denoted as SX .!/ or SX .!I!/
respectively.

The modulation of the latent processXt is a convenient mechanism to account for a wide range of non-stationary
processes. In particular, this mechanism has been widely used as a modelling tool for missing data problems
in time series, where gt is assigned values 0 or 1 when respectively missing or observing a data point in time
(Jones, 1962).

To understand when we can recover the parameters controlling the latent process Xt from observing QXt , we
need to put further conditions in place on gt . The time series QXt=gt cannot always be formed as gt may be zero
for some time indices, corresponding to missing observations. Another reason is that we may not directly observe
QXt , but instead we may observe an aggregated process QXt C Zt , where Zt is a stationary process independent

from QXt , this preventing us from recovering the stationary latent process Xt by division.
We assume that QXt satisfies (1) for a Gaussian, real-valued, zero-mean stationary Xt with absolutely summable

autocovariance sequence. Then E¹ QXtº D gtE¹Xtº D 0, and the time-varying autocovariance sequence is defined
by c QX .t; t C " I!/ D E

® QXt QXtC !¯. Given a single length-N realization QX0; : : : ; QXN"1, we start by computing the
usual method of moments estimator according to

Oc.N/QX ."/ D 1

N

N"!"1X
tD0

QXt QXtC ! ; (2)

for " D 0; 1; : : : ; N # 1, such that " is within the range of time offsets that is permissible given the length-N
sample. Equation (2) is the biased sample autocovariance sequence of the modulated time series, which we define
even though the process is non-stationary, as this object will become pivotal in our estimation procedure. The
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expectation of this object, which we denote as Nc.N/QX ." I!/ or simply Nc.N/QX ."/, takes the following form:

Nc.N/QX ."/ D E¹ Oc.N/QX ."/º D E

´
1

N

N"!"1X
tD0

QXt QXtC !
µ
D cX ."/

1

N

N"!"1X
tD0

gtgtC ! D c.N/g ."/ " cX ."/; (3)

where we have introduced the (deterministic) sample autocovariance of the modulating sequence,

c.N/g ."/ D 1

N

N"!"1X
tD0

gtgtC ! : (4)

In the specific case where the modulating sequence ¹gtº is constant and equal to unity everywhere, which would
correspond to observing the latent stationary process directly, we recover the expectation of the biased sample
autocovariance for stationary time series, .1 # "=N/ cX ."/, for " D 0; : : : ; N # 1. More generally, a standard
assumption is to say that the modulated process QXt is an asymptotically stationary process (Parzen, 1961, 1963),
which arises if for all lags " , the quantity c.N/g ."/ in (3) converges as N tends to infinity. We define this formally
as follows.

Definition 2 (Asymptotically stationary process). Let ¹ QXtº be a discrete-time random process. We say that ¹ QXtº
is an asymptotically stationary process if there exists a fixed function ¹%."/ W " 2 Nº such that for all " 2 N,

lim
N!1

E

´
1

N

N"!"1X
tD0

QXt QXtC !
µ
D %."/; (5)

or specifically if QXt is a modulated process as defined in Definition 1, QXt is asymptotically stationary if,

lim
N!1

Nc.N/QX ."/ D %."/; (6)

where Nc.N/QX ."/ is defined in (3).

An example of a non-stationary but asymptotically stationary process is given by Parzen (1963), where a station-
ary process is observed according to a periodically missing data pattern, such that the first k values are observed,
the next l values are missed, the next k values are observed, and so on, where k and l are two strictly positive
integers.

The class of asymptotically stationary modulated processes (Parzen, 1963; Dunsmuir and Robinson, 1981b;
Toloi and Morettin, 1989; Jiang and Hui, 2004) corresponds to that for which there exists a sequence ¹Rg."/ W" 2Nº
such that

lim
N!1

c.N/g ."/ D Rg."/; 8" 2 N: (7)

Indeed we then note that Nc.N/QX ."/! Rg."/cX ."/ as N #!1, so we could estimate cX ."/ by defining

Oc.N/X ."/ D
Oc.N/QX ."/

Rg."/
; (8)

assumingRg."/ ¤ 0 for all " 2 N and is known. It is shown in Parzen (1963) that Oc.N/X ."/ is a consistent estimator
of the autocovariance sequence cX ."/ of the latent stationary process, under some rather mild conditions. Further
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results are found in Dunsmuir and Robinson (1981b). Consistent spectral density estimates can be obtained by a
Fourier transformation of the sequence ¹k.N/."/ Oc.N/X ."/ W " D 0; : : : ; N # 1º, where k.N/."/ is chosen suitably
for " D 0; : : : ; N # 1.

The key feature in Definition 2 is that in (6), we average the time-varying autocovariance sequence
c QX .t; t C "/ D E

® QXt QXtC !¯ across a time period N to produce an average autocovariance across the time period,
written as Nc.N/QX ."/. If this converges (in N ) to a function of " , then by observing the modulated process over a
suitably long time interval, we can recover the second-order properties of the stationary latent process.

We now wish to explore a more general assumption than that of asymptotic stationarity for modulated processes.
Specifically, we seek a larger class of models where consistent inference is still achievable. This will be smaller
than the full class of models for gt , as using a trivial example, if gt % 0 always then we would not be able to
infer properties of the generating mechanism of Xt . For consistent inference, we propose the following class of
modulated processes.

Definition 3 (Modulated process with a significant correlation contribution). Assume that QXt is specified by (1).
We say that QXt is a modulated process with a significant correlation contribution if there exists a finite subset of
non-negative lags & $ N such that,

1. The mapping ! 7! ¹cX ." I!/ W " 2 &º is one-to-one (injective).
2. For all lags " 2 & ,

lim inf
N!1

ˇ̌
ˇc.N/g ."/

ˇ̌
ˇ > 0; (9)

where lim inf
N!1

is the limit inferior.

Because of the symmetry of autocovariance sequences, we do not need to consider " < 0 in this definition. Point
1 of Definition 3 means that for any two distinct parameter vectors !;! 0 2 ‚, there exists at least one lag " in
the finite set & such that cX ." I!/ ¤ cX ." I! 0/. It is therefore an assumption about the latent process model. The
sequence

ˇ̌
c.N/g ."/

ˇ̌
is bounded above since the modulating sequence is assumed to be bounded above. Therefore,

the limit inferior in (9) is always finite. We observe that, for " 2 & , (9) is equivalent to

9˛! > 0; 9N! 2 N;8N 2 N; N & N! )
ˇ̌
ˇc.N/g ."/

ˇ̌
ˇ & ˛! ; (10)

which we interpret as the fact that the sequence
ˇ̌
c.N/g ."/

ˇ̌
is bounded below for N large enough. For further

understanding of point 1 in Definition 3, we provide the following two simple examples.

1. Let the latent process ¹Xtº be an autoregressive process of order p, denoted as AR(p), with known mean zero
and unknown innovation variance, and with the parameter set ‚ that is a subset of RpC 1. If the parameter
set ‚ is chosen appropriately, that is, such that the roots of the characteristic equation all lie outside the unit
circle, the Yule–Walker equations (Brockwell and Davis, 1991) show that ! 7! ¹cX ." I!/ W " 2 &º, where
& D ¹0; : : : ; pº, is a one-to-one mapping. Similarly if ¹Xtº is a moving average process of order q, denoted as
MA(q), with known mean an unknown innovation variance and if the parameter set ‚ is chosen appropriately
(Dzhaparidze and Yaglom, 1983), then the mapping ! 7! ¹cX ." I!/ W " 2 &º, where & D ¹0; : : : ; qº, is
one-to-one.

2. Let the latent process ¹Xtº be the MA(2) process defined by

Xt D ' .(t C )2(t"2/ ; (11)
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where the innovations (t are i.i.d. and have a standard normal distribution and ' > 0. The parameters of the
model are .)2; '/, and the parameter set ‚ D R ' Rn¹0º ensures that the mapping ! 7! ¹cX ." I!/ W " 2 &º,
where & D ¹0; 2º, is one-to-one. Note that observing lag # 1 is not required here as we have assumed )1 D 0
in the model.

The definition of a significant correlation contribution constrains how much energy adds up for any fixed lag
" 2 & . We see directly from (3) that if we assume a significant correlation contribution, the expectation of the
sample autocovariance sequence of QXt does not vanish with the length of the observation N , at least for lags in & .
This allows for consistent estimation of the parameter ! as we will see in Section 5. As a trivial counterexample,
assume for instance that c.N/g ."/ goes to zero when N goes to infinity. Then Oc.N/QX ."/ in (2) goes to zero as
well, independently of the parameter vector ! , either resulting in infeasible estimation or requiring a change of
estimation approach.

Asymptotically stationary modulated processes are a subclass of modulated processes with a significant corre-
lation contribution. Specifically, for the class of asymptotically stationary modulated processes, (7) requires that
c.N/g ."/ converges to the non-zero quantityRg."/, which is a stronger requirement than (9), where we only require
an asymptotic positive lower bound rather than convergence.

2.2. Missing Observations

A particularly enticing use of modulated processes is to account for missing observations in stationary time series.
Let ¹Xt W t 2 Nº be a stationary process. For each time point t 2 N, we set (Parzen, 1963)

gt D
²
0 if Xt is missing
1 if Xt is observed : (12)

The process QXt D gtXt is formed at all time points t 2 N, forming a modulated process in the sense of
Definition 1.

An example where the missing observation pattern is deterministic and leads to an asymptotically stationary
modulated process is the case of .k; l/-periodically missing data treated by Jones (1962) and Parzen (1963). This
corresponds to observing the k first values, missing the l next values, observing the k next values and so on. Note
that Parzen (1963) requires k > l for non-parametric estimation of the spectral density of Xt based on (8). Our
model of modulated processes with significant correlation contribution allows for k ( l , as long as we observe
the lags in & . A generalization of this missing data scheme was introduced by Clinger and Ness (1976) with an
application to oceanography.

Missing observations can also occur according to a random mechanism. This can be modelled by a random mod-
ulation sequence taking values zero and one (Scheinok, 1965; Bloomfield, 1970), when the random mechanism
according to which missing points occur is independent from the observed process, which we shall assume. Con-
ditioning on the observed modulation function, we then return to the deterministic modulating sequence described
in this article. Most works, to our knowledge, have assumed some sort of stationarity for the random modulation
sequence, that is, that the sample autocovariance of the modulation sequence converges almost surely to a non-
zero value at all lags (Dunsmuir and Robinson, 1981a, c). Some authors do not require such an assumption but
have treated only specific models, usually autoregressive models (Jones, 1980; Broersen et al., 2004). The defini-
tion of a modulated process with a significant correlation contribution in such a situation needs to be understood in
a probabilistic fashion, that is, we require that property 2 of Definition 3 be satisfied with probability one. Indeed,
if one sees the general random experiment as a two-step experiment, where first the random modulating sequence
¹gtº is generated and observed and then a stationary process ¹Xtº is modulated by this modulating sequence to
produce ¹ QXtº, then with probability one, the modulating sequence ¹gtº in the first step makes ¹ QXtº a modulated
process with significant correlation contribution. Such a situation will be described by saying that ¹ QXtº is a modu-
lated process with an almost surely significant correlation contribution. We shall now give a few examples of cases
satisfying the stated conditions.
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1. Let Xt be an AR(p) Gaussian process with mean zero. If we set & D ¹0; : : : ; pº, and if the missing data
occur deterministically according to a .k; l/-periodic pattern, k & p is a sufficient condition for the resulting
modulated process to have a significant correlation contribution. This is because we are able to observe an
infinite number of time the lags in & . We do not require any additional condition on l .

2. Let Xt be an AR(p) process and consider the missing data scheme treated by Scheinok (1965), where the
random mechanism is a sequence of Bernoulli i.i.d. trials with identical probability of success (to be understood
as observation here) 0 < p ( 1. According to the strong central limit theorem, for all lag " 2 N, c.N/g ."/
converges a.s. to p2 > 0 and therefore lim inf

N!1
ˇ̌
c.N/g ."/

ˇ̌
> 0 a.s. Therefore, the observed process is a modulated

process with an almost surely significant correlation contribution.
3. Consider the random mechanism where the sequence ¹gtº is generated according to

gt ) B.pt /; (13)

where B.p/ represents the Bernoulli distribution with parameter p, and where we set

pt D P C Ap cos .!pt / ; (14)

with 0 < P < 1, 0 ( Ap < min .P; 1 # P/ (which ensures 0 < P # Ap ( pt ( 1;8t 2 N), and
!p 2 Œ##;#$. The Bernoulli parameters pt as given by (14) will oscillate periodically around their mean
value P . This also leads to lim inf

N!1
ˇ̌
c.N/g ."/

ˇ̌
> 0 a.s., using the fact that pt is bounded below by P #Ap > 0.

In Section 4.2, we will provide a simulation study based on example 3. This is novel in comparison with previously
studied missing observation schemes as we do not make an assumption of stationarity for the process gt (Dunsmuir
and Robinson, 1981b).

2.3. Sampling Properties of Modulated Processes

We shall review and study some distributional properties of the periodogram of a modulated time series. Dunsmuir
and Robinson (1981b) used the periodogram as the basis for designing pseudo-likelihood methods for asymptot-
ically stationary modulated time series, with an emphasis on treating the problem of missing data. Similarly, in
Section 3, we will use the results of this section to formulate a pseudo-likelihood using the periodogram, for our
class of modulated processes with a significant correlation contribution. Herein we shall denote *N as the set of
Fourier frequencies 2#=N " .#dN=2e C 1; : : : ;#1; 0; 1; : : : ; bN=2c/.

We denote QX D ¹ QXt W t D 0; : : : ; N # 1º as a single realization of a length-N sample of a modulated process
¹ QXtº defined in Definition 1. The unobserved sample of the latent stationary process is denoted as X D ¹Xt W
t D 0; : : : ; N # 1º accordingly. The squared modulus of the Fourier transform of the time series X, known as the
periodogram, is a common statistic in stationary time series analysis (Percival and Walden, 1993) and is given by

OS .N/X .!/ D 1

N

ˇ̌
ˇ̌
ˇ
N"1X
tD0

Xte
"i!t

ˇ̌
ˇ̌
ˇ
2

; ! 2 R: (15)

Note that this quantity is 2#-periodic, that is, OS .N/X .! C 2#/ D OS .N/X .!/, ! 2 R. The periodogram of the
sample X is an asymptotically unbiased estimator of the spectral density of the stationary process ¹Xtº, that is,
limN!1 E¹ OS .N/X .!/I!º D 2#SX .!I!/ for all ! 2 Œ##;#/ (Brockwell and Davis, 1991). However, the variance
of the periodogram does not decrease to zero as the sample size increases. A consistent non-parametric estimator
of a smooth spectral density SX .!I!/ of the latent process ¹Xtº, were it to be directly observed, could be obtained
by smoothing the periodogram across frequencies (Percival and Walden, 1993, pp. 235–253), as long as SX .!I!/
is continuous.
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For the modulated process ¹ QXtº, the latent time series ¹Xtº is not observed, so we instead compute the peri-
odogram of the modulated (and observed) process itself, OS .N/QX .!/, and we define the expected periodogram
to be

NS .N/QX .!I!/ D E
°
OS .N/QX .!/I !

±
; ! 2 R:

Note that this quantity is also 2#-periodic. It is necessary to understand how modulation in the time domain will
affect the expected periodogram. Proposition 1 gives more insight on how NS .N/QX .!I!/ relates to the modulating
sequence gt and the spectral density SX .!I!/ of the latent stationary process ¹Xtº.

Proposition 1 (Expectation of the periodogram of a modulated time series). The expectation of the periodogram
of the modulated time series takes the form

NS .N/QX .!I!/ D 2#
Z "

""
SX .! # +I!/S .N/g .+/d+; 8! 2 R; (16)

which is a periodic convolution. Here S .N/g .+/ is the squared value of the Fourier transform of the finite sequence
¹gtºtD0;:::;N"1, that is,

S .N/g .+/ D 1

2#N

ˇ̌
ˇ̌
ˇ
N"1X
tD0

gte
"i#t

ˇ̌
ˇ̌
ˇ
2

;

which is defined for + 2 R and is 2#-periodic.

Proof
The proof for this proposition, which is a well-known result, can be found in Dunsmuir and Robinson (1981b,
p. 562).

When gt D 1 everywhere, which corresponds to observing the stationary latent process directly, the quantity
S .N/g .+/ is the usual Féjer kernel (Bloomfield, 2000) defined by

F .N/.+/ D
sin2

!
N#
2

"
2#N sin2

!
#
2

" ; 8+ 2 R n*N ; F .N/.0/ D N

2#
; F .N/.+/ D 0; 8+ 2 *N n ¹0º; (17)

which behaves asymptotically (as N tends to infinity) as a Dirac delta-function centred at zero. This explains why
the periodogram is, asymptotically, an unbiased estimator of the spectral density of a stationary process up to a
multiplicative factor of 2# (Brockwell and Davis, 1991).

When gt is such that the modulated process is asymptotically stationary, Dunsmuir and Robinson (1981c)
approximate 1

2"

P1
!D"1 %."/e

i!! , where %."/ D Rg."/cX ."/ using the notation of (7), for ! at Fourier
frequencies by

QS .D/QX .!I!/ D .2#/2

N

X
#2$N

SX .! # +I!/S .N/g .+/: (18)

When gt is such that the modulated process QXt has a significant correlation contribution, we derive the exact
value of NS .N/QX .!I!/ by using the theoretical autocovariances of the latent model, in a similar fashion as in Sykulski
et al. (2016b) for stationary processes. This is the result of Proposition 2, which follows.
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Proposition 2 (Computation of the expected periodogram). Let ! 2 R. We have

NS .N/QX .!I!/ D 2R
´
N"1X
!D0
Nc.N/QX ." I!/e"i!!

µ
# Nc.N/QX .0I!/; (19)

where c.N/QX ." I!/ is defined in (3). By defining Nc.N/QX .#" I!/ D Nc.N/QX ." I!/ for " D 1; : : : ; N # 1, we can
(equivalently) express this relationship as

NS .N/QX .!I!/ D
N"1X

!D".N"1/
Nc.N/QX ." I!/e"i!! :

Proof
The proof, which is standard (Brockwell and Davis, 1991, p. 334), follows directly from (15) and (3) in a few lines
of algebra after aggregating along the diagonal of the covariance matrix.

Therefore, the expectation of the periodogram of QX is the discrete Fourier transform of the expected sample
autocovariance sequence. This is true even though we have not assumed stationarity; it is simply a consequence
of the relation between the formal definitions of (3) and (15). Note that calculating the Fourier transform of the
sequence Nc.N/QX ." I )/ will always give a real-valued positive NS .N/QX .!I!/ for ! 2 ‚, as the latter is defined as the
expectation of the squared modulus of the Fourier transform of the process.

Proposition 2 can be used to compute the expected periodogram of an asymptotically stationary modulated
process. In such cases, the difference between (18) and Proposition 2 is that (18) is a finite approximation of
(16), whereas Proposition 2 is exact. The difference occurs because (18) does not account for the bias of the
periodogram that results from leakage (Sykulski et al., 2016b), whereas these effects are naturally accounted for
in Proposition 2.

To justify the use of the expected periodogram in the setting of modulated processes with a significant correla-
tion contribution, we now consider what conditions are required for the expected periodogram to carry sufficient
information so that the parameter vector is identifiable within the parameter set ‚.

Proposition 3 (Identifiability of the expected periodogram). If the modulated process has a significant correlation
contribution, the expected periodogram is a one-to-one (i.e. injective) mapping from the parameter set ‚ to the
set of non-negative continuous functions on Œ##;#$, for a large enough sample size. More specifically, for two
distinct parameter vectors ! and ! 0, the expected periodograms NS .N/QX .!I!/ and NS .N/QX .!I Q!/ cannot be equal for
all Fourier frequencies 2"

N

!
#dN

2
e C 1; : : : ;#1; 0; 1; : : : ; bN

2
c
"

for N large enough.

Proof
Let !; Q! 2 ‚ be distinct parameter vectors, and letN be a positive integer. Let & be as given by Definition 3. By the
assumption of significant correlation contribution, the finite sequences ¹cX ." I!/ W " 2 &º and ¹cX ." I Q!/ W " 2 &º
are not equal. Since Nc.N/QX ." I!/ D c.N/g ."/cX ." I!/ for " 2 & , and according to (10), for N large enough, the
sequences ¹ Nc.N/QX ." I!/ W " 2 &º and ¹ Nc.N/QX ." I Q!/ W " 2 &º are not equal. Hence for N large enough, the sequences
¹ Nc.N/QX ." I!/ W " D #.N # 1/; : : : ; N # 1/º and ¹ Nc.N/QX ." I Q!/ W " D #.N # 1/; : : : ; N # 1/º are not equal. Their
finite Fourier transforms ¹ NS .N/QX .!I!/ W ! 2 *N º and ¹ NS .N/QX .!I Q!/ W ! 2 *N º are, by the bijective nature of the
Fourier transform, not equal either.

This means that for two distinct parameters vectors !; Q! 2 ‚, we will have two distinct expected periodograms.
This is a necessary condition for an estimation procedure based on the expected periodogram. We will propose
such an estimation procedure in Section 3 and derive its consistency and convergence rate in Section 5.
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2.4. Bivariate Modulated Processes

It is common in practical applications to observe more than one time series at any time and to analyse a set
together. Often, the series in the set are related via phase shifts and other small temporal inhomogeneities; see,
for example, Allen and Robertson (1996), Rünstler (2004), Allefeld et al. (2009), & Lilly and Olhede (2012).
Bivariate non-stationary processes can be challenging to model, as both components may not be representable in
the same non-stationary oscillatory family (Tong, 1973, 1974). To explore the nature of multi-variate modulation,
we shall investigate the representation of bivariate processes. For ease of exposition, we shall represent such
series using complex-valued time series (Walker, 1993). We shall continue to assume that the latent process, now
denoted as Zt for complex-valued processes, is Gaussian and zero-mean, leaving only the second-order structure
to be modelled. For complex-valued processes, both the autocovariance cZ."/ D E¹Z!t ZtC !º (the star denotes
conjugation) and the relation rZ."/ D E¹ZtZtC !º sequences need to be modelled (Walden, 2013). Complex-
valued processes, unlike real-valued, no longer have a spectrum that needs to satisfy Hermitian symmetry, and
if the series represents motion in the plane, the positive and negative frequencies represent anti-clockwise and
clockwise rotations respectively. Following the classical modelling framework (Miller, 1969) for complex-valued
processes, we shall assume that the relation sequence takes the value zero for all lags. The complex-valued process
is then said to be proper, which is equivalent to the isotropy of the corresponding bivariate real-valued process. The
assumption of propriety has the consequence of directly extending equation (1) to the complex-valued case from
the real-valued case. Specifically, let Zt be a complex-valued Gaussian proper zero-mean process; a complex-
valued modulated process is defined as one taking the form

QZt D gtZt ; (20)

at all times t 2 N, where gt D ,te
i%t is a bounded modulation sequence. We note that for complex-valued time

series, the modulation sequence is complex-valued. With this definition, the modulation series gt accomplishes a
time-dependent rescaling or expansion/dilation, from ,t , together with a time-dependent rotation, from ei%t .

The autocovariance of the complex-valued modulated process QZt at times t1 and t2 is given by the conveniently
simple form,

c QZ.t1; t2I!/ D E
® QZ!t1 QZt2 I!

¯
D g!t1gt2cZ.t2 # t1I!/ D ,t1,t2e

i.%t2"%t1 /cZ.t2 # t1I!/;

and c QZ.t1; t2I!/ fully characterizes the process. Note that this quantity is not only a function of the lag t2 # t1 as
the process is no longer stationary. Similarly to the univariate case (cf. (4)), let N be any positive integer, and we
define for " D 0; : : : ; N # 1,

c.N/g ."/ D 1

N

N"!"1X
tD0

g!t gtC ! : (21)

Note that when gt is real-valued, (21) and (4) are the same. We also extend the notion of a significant correla-
tion contribution for complex-valued modulated processes, which naturally mimics Definition 3. We define the
expected periodogram of a complex-valued modulated time series as NS .N/QZ .!I!/ D E

°
OS .N/QZ .!/I!

±
, which can

be computed efficiently similarly to Proposition 2 for the univariate case, by replacing QXt by QZt in (3) and (19).
A univariate real-valued modulated process is stationary if and only if the modulating sequence is a constant. A

necessary and sufficient condition on the modulating sequence for the complex-valued modulated process (20) to
be stationary is more complicated to obtain and is determined in the following proposition.

Proposition 4 (Stationary bivariate modulated processes). Let QZt be the complex-valued modulated process
defined in (20). First, assume the latent process ¹Ztº is a white noise process. Then the modulated process ¹ QZtº is
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stationary if and only if the modulating sequence gt D ,tei%t is of constant modulus, that is, ,t D a & 0. In such
case, the modulated process is a white noise process with variance a2E¹jZ0j2º.

More generally, assume the stationary latent process ¹Ztº is not a white noise process, and let ! D gcd¹" ¤ 0 2
N W jcZ." I!/j > 0º, where gcd denotes the greatest common divisor. Then the modulated process is stationary if
and only if ¹gtº is zero everywhere or if there exists two constants a > 0 and % 2 Œ##;#/ such that for all t 2 N,
letting r D t mod ! be the remainder of t divided by !,

,t D a

-t D -r C %
$
t

!

%
mod 2#;

where
j
t
&

k
denotes the floor of t

&
and mod 2# indicates that the equality is true up to an additive multiple of

2# . In this case, the spectral density of the modulated process ¹ QZtº is

S QZ.!/ D a2SZ
&
! # %

!

'
:

Proof
See Appendix A.1.

The value of! in Proposition 4 depends on the location of zeros in the covariance sequence of the latent process.
In particular, if jcZ.1I!/j > 0, then ! D 1 and QZt is stationary only if there exists a constant % 2 R such that
for all t 2 N, -t D -0 C % t mod 2# . If jcZ.2I!/j > 0 but jcZ." I!/j D 0 for all " 2 N; " ¤ 0; 2, then ! D 2
(this can occur with a second-order moving average process for instance). In that case, the modulated process QZt
is stationary if and only if there exists a constant % 2 Œ##;#/ such that for all t 2 N, -t D -0 C % t2 mod 2# if
t is even, or -t D -1 C % t"12 mod 2# if t is odd.

2.4.1. A Time-varying Bivariate Autoregressive Process
We now introduce the specific non-stationary bivariate autoregressive model that will be used in our real-world
data application. We consider the discrete-time complex-valued process ¹ QZt W t 2 Nº, defined by

QZt D reiˇt QZt"1 C (t ; t & 1; 0 ( r < 1; ˇt 2 R;

QZ0 ) NC
&
0;

'2

1 # r2
'
; ' > 0;

(t ) NC
!
0; '2

"
;

(22)

where NC
!
0; '2

"
denotes the complex-valued normal distribution with mean 0 and variance '2, and with i.i.d. real

and imaginary parts. Note that the real and imaginary parts of (t then each have variance '2=2. Here 0 ( r < 1 is
commonly known as either the autoregressive or damping parameter, ensuring the mean-reversion of the process.
By mean-reversion, we mean that, given any time t 2 N, we have lim!!1 E

® QZtC ! j QZt¯ D 0, that is, irrespective
of the size of the perturbation (t at time t , the process is expected to return to its mean. This is seen from the
following inductive relationship:

QZtC ! D r!ei
P!
jD1 ˇtC j QZt C

!X
jD1

r!"j ei
P!
kDjC 1 ˇk(tC j ; " & 0;

which leads to

E
® QZtC ! j QZt¯ D r!ei

P!
jD1 ˇtC j QZt ;
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which goes to zero exponentially as " goes to infinity, since 0 ( r < 1. A damping parameter r close to 1
will lead to a slowly decaying autocorrelation sequence. A value of r close to 0 will lead to a process with very
short memory, with the limiting behaviour of a white noise process as r ! 0. The parameter ˇt is a known,
dimensionless time-varying frequency, which we shall take within the interval Œ##;#/ without loss of generality.

Process (22) is a non-stationary version of the complex-valued first-order autoregressive process (Sykul-
ski et al., 2016a) introduced by Le Breton (1988), and also a discrete-time analogue of the complex-valued
Ornstein–Uhlenbeck (OU) process (Arató et al., 1962) with time-varying oscillation frequency. We now prove in
Proposition 5 that the model defined in (22) belongs to our class of bivariate modulated processes.

Proposition 5 (Modulated process representation). Let ¹ QZtº be the process defined in (22). There exists a unit-
magnitude complex-valued modulating sequence gt , and a stationary complex-valued proper process ¹Ztº such
that ¹ QZtº is the modulation of ¹Ztº by the non-random sequence ¹gtº. More explicitly, we have QZt D gtZt , for
all t 2 N, where

gt D ei
Pt
uD1 ˇu ;

Zt D rZt"1 C (0t ; t & 1;
(23)

and Z0 ) NC .0; '2=.1 # r2//. The process (0t is a Gaussian white noise process with the same properties (zero-
mean, variance '2 and independence of real and imaginary parts) as those of (t . Defined as such, the latent
complex-valued process Zt is stationary and proper.

Proof
See Appendix A.2.

The stationary latent processZt defined in (23) is a stationary complex-valued first-order autoregressive process
and is Gaussian. Its autocovariance sequence is given by

cZ."/ D
'2

1 # r2 r
! ; " 2 Z:

It is easy to verify that the mapping .r; '/ 7! .cZ.0/; cZ.1// is a one-to-one mapping. In the following proposition,
we stipulate a sufficient condition on the frequencies ˇt so that the process defined in (22) satisfies our assumption
of significant correlation contribution, when represented as a modulated process as in Proposition 5.

Proposition 6. Let QZt be the process defined by (22). Assume that there exists „ 2 Œ##;#/ and 0 ( . < "
2

such that for all t 2 N, jˇt #„j ( .. Then QZt is a modulated process with significant correlation contribution.

Proof
See Appendix A.3.

Hence with some conditions on ˇt , the complex-valued autoregressive process defined by (22) belongs to the
class of processes with a significant correlation contribution, and the expected periodogram is a one-to-one map-
ping from the parameter set Œ0; 1/ ' Œ0;1/ to the set of non-negative continuous functions on Œ##;#$, according
to Proposition 3 – a proposition that is readily extended to the complex-valued processes of this section.

3. PARAMETRIC ESTIMATION OF MODULATED PROCESSES

We have explored a class of univariate and bivariate modulated processes. The next stage is to describe their effi-
cient inference. In this section, we describe how the parameters of the latent model for ¹Xtº can be inferred from
observing a single realization of the modulated process ¹ QXtº. Most authors have focused on the problem of esti-
mating modulated processes under the assumption of asymptotic stationarity as defined in Definition 2 (Parzen,
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1963; Dunsmuir and Robinson, 1981a, b; Toloi and Morettin, 1989). Although non-parametric estimates have been
the key concern in most of the relevant literature, there have been instances where parametric estimation has been
considered; see, for instance, Dunsmuir and Robinson (1981a). Parametric estimation ensures that the estimated
autocovariance sequence is non-negative definite, as opposed to using non-parametric estimates of the form given
in (8). Parametric estimation is also preferable when the true model is known, as it uses the observed degrees of
freedom more efficiently. Herein we consider the problem of parametric estimation for our class of modulated pro-
cesses with a significant correlation contribution, which, we recall, is a generalization of asymptotically stationary
modulated processes. We propose an adaptation of the Whittle likelihood (Whittle, 1953), based on the expected
periodogram.

We wish to infer the parameter vector ! of the latent univariate stationary process ¹Xtº within the parameter
set ‚, based on the sample QX D QX0; : : : ; QXN"1 and the known modulating sequence ¹gt W t D 0; : : : ; N # 1º.
Because it has been assumed that the latent process is a zero-mean Gaussian process, the same is true for the
modulated process. The vector QX is multi-variate Gaussian with an expected N ' N autocovariance matrix
C QX .!/ D

®
c QX .t1; t2I!/

¯
for t1; t2 D 0; : : : ; N # 1, where the components of this matrix are given by

c QX .t1; t2I!/ D gt1gt2cX .t2 # t1I!/. However, the parameter vector ! of the latent process ¹Xtº can be uniquely
determined from the modulated process ¹ QXtº only if ! !

®
c QX .t1; t2I!/ W t1; t2 2 N

¯
is injective, that is, there is

no ! 0 2 ‚ such that ! ¤ ! 0 and c QX .t1; t2I!/ D c QX .t1; t2I! 0/ 8t1; t2 2 N. This necessary condition is clearly
achieved under the assumption of a modulated process with significant correlation contribution. The negative of
the exact time-domain Gaussian log-likelihood is proportional to

`G.!/ D
1

N
log

ˇ̌
C QX .!/

ˇ̌
C 1

N
QXTC QX .!/"1 QX; (24)

where
ˇ̌
C QX .!/

ˇ̌
denotes the determinant of C QX .!/. Note that one may need to remove from QX points where gt is

zero, to ensure that the determinant of the covariance matrix is non-zero, and since those observations carry no
information about ! . We minimize `G to obtain the time-domain maximum likelihood estimator, that is,

O!.N/G D arg min
!2‚

`G.!/:

Parameter estimation based on time-domain likelihood has several drawbacks in the context of modulated pro-
cesses. For a large sample size N , computing the determinant of the covariance matrix is expensive, requiring
O.N 3/ elementary operations in general (although in specific cases such as for Markovian processes, the likeli-
hood is obtained in only O.N / computations). Moreover, each computation of the parametric covariance matrix
C QX .!/ within the exact likelihood requires O.N 2/ operations, compared with O.N / operations in the case of a
stationary process.

We propose a computationally efficient estimation method for the parameters of the latent model based on the
periodogram of the modulated time series. First, recall that for the stationary time series ¹Xtº, making use of the
Toeplitz property of the autocovariance matrix, one can approximate the negative log-likelihood using the Whittle
likelihood (Whittle, 1953), which once discretized is evaluated by

`W .!/ D
1

N

X
!2$N

´
logSX .!I!/C

OS .N/X .!/

SX .!I!/

µ
; (25)

where again*N is the set of Fourier frequencies 2"
N
"
!
#dN

2
e C 1; : : : ;#1; 0; 1; : : : ; bN

2
c
"
. This pseudo-likelihood

has the benefit of O.N logN/ computational complexity using the discrete Fourier transform, with the resulting
maximum pseudo-likelihood estimator being asymptotically equivalent to the time-domain maximum likeli-
hood estimator. We adapt this pseudo-likelihood procedure to modulated processes with significant correlation
contribution in the following definition.
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Definition 4 (Spectral maximum pseudo-likelihood estimator for univariate modulated processes). Let ¹ QXtº be
a modulated process with significant correlation contribution, and let QX be its length-N sample. We define the
following pseudo-likelihood:

`M .!/ D
1

N

X
!2$N

´
log NS .N/QX .!I!/C

OS .N/QX .!/

NS .N/QX .!I!/

µ
; (26)

where NS .N/QX .!/ is defined in Section 2.3 as the expectation of the periodogram of the modulated time series
and is computed using Proposition 2. The corresponding estimator of the parameter vector ! is obtained by a
minimization procedure over the parameter set,

O!.N/M D arg min
!2‚

`M .!/:

The sequence ¹c.N/g ."/ W " D 0; : : : ; N#1º defined in (4) and necessary to the computation of the expected peri-
odogram requires O.N logN/ computations, as it can be computed as the biased sample autocovariance sequence
of g0; : : : ; gN"1 via a fast Fourier transform. This initial step is carried out independently of inferring the param-
eter of interest ! . Then any computation of ¹ NS .N/QX .!I!/ W ! 2 *N º for any value of the parameter vector ! will
require O.N logN/ computations, since we can compute ¹ Nc.N/QX ." I!/ W " D 0; : : : ; N # 1º in O.N / computa-
tions using (3) and the precomputed ¹c.N/g ."/ W " D 0; : : : ; N # 1º, and the quantity ¹ NS .N/QX .!I!/ W ! 2 *N º is
then computed via a fast Fourier transform (Proposition 2). The reason for separating the initial step of comput-
ing ¹c.N/g ."/ W " D 0; : : : ; N # 1º from the rest of the computation is that it is carried out independently of the
parameter value, and therefore outside any call to a minimization procedure over the parameter set ‚ involving
the expected periodogram.

In the trivial case of a modulation sequence equal to 1 everywhere, then the pseudo-likelihood of Definition 4
does not exactly equal the Whittle likelihood of (25). This is because the spectral density SX .!/would be replaced
by the expected periodogram NS .N/QX .!/, which is the convolution of the true spectral density with the Fejér kernel
(equation (18)). For stationary time series, this type of estimator was investigated in Sykulski et al. (2016b) and was
found to significantly reduce bias and error in parameter estimation as compared with standard Whittle estimation.
For modulated processes that are asymptotically stationary, this signifies the difference between using (18) and the
quantity defined by Proposition 2 to fit the periodogram.

The same estimator to Definition 4 can be used for the complex-valued proper time series QZt considered in
Section 2.4, that is, we define our estimator

O!.N/M D arg min
!2‚

`M .!/; (27)

with the objective function given by

`M .!/ D
1

N

X
!2$N

´
log NS .N/QZ .!I!/C

OS .N/QZ .!/

NS .N/QZ .!I!/

µ
: (28)

The comments on computational aspects hold for the complex-valued case as well. In Section 5, we will prove
consistency of the frequency-domain estimator and its O.N"1=2/ convergence rate.
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4. APPLICATIONS

4.1. Application to Oceanographic Data

We analyse real-world data from the Global Drifter Program. Specifically, we model jointly the latitudinal and
longitudinal velocities obtained from instruments known as drifters, which drift freely according to ocean surface
flows (Sykulski et al., 2016c). Those velocities are modelled as the aggregation of two independent complex-
valued processes, one of which is non-stationary and which we model as the complex-valued AR(1) process
described in Section 2.4.1. We use our estimator (27) to infer physical quantities that describe the ocean surface
currents. To scrutinize our results and compare with alternative approaches, we also present two simulation stud-
ies, the first one being based on a dynamical model of the ocean surface currents and the second one being a
simulated version of the model of Section 2.4.1. All data and code used in this article are available for download
at http://www.ucl.ac.uk/statistics/research/spg/software, and all results in this section and Section 4.2 are exactly
reproducible.

4.1.1. The Global Drifter Program
The Global Drifter Program database (www.aoml.noaa.gov/phod/dac) is a collection of measurements obtained
from buoys known as surface drifters, which drift freely with ocean currents and regularly communicate measure-
ments to passing satellites at unequally spaced time intervals averaging 1.4 hours since 2005. The data are then
interpolated onto a regular temporal grid using the approach of Elipot et al. (2016). The measurements include
position, and sea surface temperature. In total, over 11,000 drifters have been deployed since 2005, with approxi-
mately 70 million position recordings obtained. The analysis of this data is crucial to our understanding of ocean
circulation (Lumpkin and Pazos, 2007), which is known to play a primary role in determining the global climate
system; see, for example, Andrews et al. (2012). Furthermore, Global Drifter Program data are used to understand
the dispersion characteristics of the ocean, which are critical in correctly modelling oil spills (Abascal et al., 2010)
and more generally assist in developing theoretical understanding of ocean fluid dynamics (Griffa et al., 2007),
which is necessary for global climate modelling.

In Figure 1(a), we display in the left panel the trajectories of 200 drifters, which either traverse or are near the
equator, interpolated for this application onto a 2-hour grid from raw position fixes available at the Global Drifter
Program web site. We focus on a single drifter trajectory, drifter ID 43594, in Figure 1(b, c), displaying both its
latitudinal position and velocity respectively, the latter of which is obtained by differencing the positions. This
velocity time series is non-stationary, as it has oscillations that appear to be modulated and change in frequency
over time. The oscillations are known as inertial oscillations – one of the most ubiquitous and readily observable
features of the ocean currents accounting for approximately half of the kinetic energy in the upper ocean (Ferrari
and Wunsch, 2009). Inertial oscillations arise owing to the deviation of the rotating Earth from a purely spherical
geometry, together with the appearance of the Coriolis force in the rotating reference frame of an Earth-based
observer (Early, 2012). The modulation of these oscillations occurs because the drifters are changing latitude – and
the Coriolis frequency, denoted as f , is equal to twice the rotation rate of the Earth*, multiplied by the sine of the
latitude /, that is, f D 2* sin / radians per second. The rotation rate of the Earth * is computed as 2#=T , where
T is one sidereal day in seconds. Note that the Coriolis frequency f is a signed quantity, implying that oscillations
occur in opposite rotational clockwise/anti-clockwise directions from one hemisphere to the other. The Coriolis
frequency is positive in the Northern hemisphere, whereas the oscillations occur in the mathematically negative
sense. Therefore, we define the inertial frequency !¹f º D #f=2#K as the negative of the Coriolis frequency
divided by 2#K, where K is one solar day in seconds, so that !¹f º is in cycles per day. The entire drifter dataset
is split into segments of 60 inertial periods in length, accounting for the variation of the inertial period along drifter
trajectories, and with 50% overlap between segments. The standard deviation of the inertial frequency along each
data segment is taken, and the 200 segments exhibiting the largest ratio of the standard deviation of the inertial
frequency, to the magnitude of its mean value along the segment, are identified for use in this study. These exhibit
the largest fractional changes in the inertial frequency and, as shown in Figure 1(a), are located in the vicinity of
the equatorial region where inertial frequency vanishes.
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4.1.2. Stochastic Modelling
The stochastic modelling of Lagrangian trajectories was investigated in Sykulski et al. (2016c), where the term
‘Lagrangian’ is used because the moving object making the observations (i.e. the drifter) is the frame of reference,
as opposed to fixed-point measurements known as Eulerian observations. In that article, the Lagrangian velocity
time series was modelled as a stationary Gaussian complex-valued time series, with the following six-parameter
power spectral density

S.!/ D A2

.! # !¹f º/2 C +2 C
B2!

!2 C h2
"˛ ; ! 2 R;

A > 0; + > 0; h > 0; B > 0; ˛ >
1

2
;

(29)

where ! is given in cycles per day.
The first component of (29) is the spectral density of a complex-valued OU process (Arató et al., 1962) and is

used to describe the effect of inertial oscillations at frequency !¹f º. Denoting QZOU.t/ the OU component, where
QZOU.t/ is complex-valued, these oscillations are described by the following stochastic differential equation:

d QZOU.t/ D .#+C i2#!¹f º/ QZOU.t/dt C AdW.t/; (30)

where t is expressed in days andW.t/ is a complex-valued Brownian process with independent real and imaginary
parts. The damping parameter + > 0 ensures that the OU process is mean-reverting. The corresponding continuous
complex-valued autocovariance is given by

s."/ D A2

2+
exp

°
#+j" j C i2#!¹f º"

±
;

and the sampled process (Arató et al., 1999) QZOU;t D QZOU.t0/, where 0 D 1=12 day is the sampling rate
corresponding to the 2-hour grid, is a complex-valued AR(1),

QZOU;t D rei2"!
¹f º' QZOU;t"1 C (t : (31)

Here (t is a Gaussian complex-valued white noise process with variance '2 and independent real and imaginary
parts. The autocovariance sequence of the stationary sampled process is given by

c QZOU
."/ D '2

1 # r2 r
!ei2"!'!

¹f º
: (32)

The transformation between the parameters of the complex-valued OU and the complex-valued AR(1) are given
by

'2 D A2.1 # e"#'/
2+0

; r D e"#': (33)

The second component of (29) is the spectral density of a stationary proper Matérn process (Gneiting et al.,
2010), denoted as ZM;t , and is used to describe two-dimensional background turbulence (Lilly et al., 2016).
Although the parameter !¹f º is varying as the drifter changes latitude, this parameter is fixed to its mean
value in each trajectory segment in Sykulski et al. (2016c). This leaves five remaining parameters to estimate,
¹A;+; B; h; ˛º, in different regions of the ocean.

The model of (29) is stationary—slowly varying non-stationarity in the data is accounted for by windowing
the data into chunks of approximately 60 inertial periods and treating the process as locally stationary within

J. Time Ser. Anal. (2017) Copyright © 2017 John Wiley & Sons, Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12244



A. GUILLAUMIN ET AL.

each window. The estimated parameters can then be aggregated spatially to quantify the heterogeneity of ocean
dynamics. This method works well on relatively quiescent and stationary regions of the ocean; however, this
method cannot account for the rapidly varying non-stationarity evident in Figure 1 and leads to model misfit and
biased parameter estimates, as we shall now investigate in detail.

4.1.3. Modulated Time Series Modelling and Estimation
We now apply the methodological contributions of this article to improve the model of (29) for highly non-
stationary time series, such as those observed in Figure 1(a). We do this by accounting for changes in the inertial
frequency, !¹f º, within each window of observation. We denote !¹f º.t/ as the continuous time-varying inertial
frequency and !¹f ºt D !¹f º.t0/ the inertial frequency value at each observed time step, t D 0; : : : ; N # 1. The
adapted version of the stochastic differential equation (30) is then given by

d QZOU.t/ D
(
#+C i2#!¹f º.t/

)
QZOU.t/dt C AdW.t/: (34)

In analogue to the proof in Appendix A.2, it is shown that the sampled process QZOU;t D QZOU.t0/ satisfies

QZOU;t D rei2"
R't
'.t"1/ !¹f º.u/du QZOU;t"1 C (t :

As the inertial frequency is only observed at sampled points, we approximate the term
R't
'.t"1/ !

¹f º.u/du by
0!¹f ºt . Specifically, we use the model of (22) for complex-valued time series, that is,

QZOU;t D rei2"'!
¹f º
t QZOU;t"1 C (t ; t & 1; (35)

where (t has the same properties as in (31) and the transformation between the parameters ¹A;+; !¹f ºt º of the non-
stationary complex-valued OU process (34) and the parameters ¹r; '; !¹f ºt º of the non-stationary complex-valued
AR(1) process (35) are given by (33).

The required methodology has been developed in Section 2.4 for bivariate (or complex-valued) time series.
We only perform the modulation on the complex OU component in (29); the Matérn component for the turbulent
background is unchanged and is considered to be stationary in the window, as it is not in general affected by
changes in !¹f º. The two components are however observed in aggregation, and for this reason, we cannot
simply demodulate the observed non-stationary signal to recover a stationary signal. Instead, to jointly estimate
the parameters ¹A;+; B; h; ˛º, we first compute the modulating sequence, gt , using (23) in Proposition 5 and
accounting for the temporal sample rate 0:

gt D ei
Pt
uD1 2"'!

¹f º
u ; (36)

for t D 0; : : : ; N # 1. Then we obtain the expected periodogram of the OU component, by computing cg."/
according to (21); then Nc.N/QZOU

."/, where we use the autocovariance of a stationary complex-valued AR(1) process
with

cZOU." I r; '/ D
'2

1 # r2 r
! ;

and Fourier transform according to (19). Next, we compute the expected periodogram of the stationary Matérn
as outlined in Sykulski et al. (2016c). Note that this can also be computed from the autocovariance of a Matérn,
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which we denote as cZM ."/, using (19), and by setting gt D 1 for all t , from which the modulation kernel (4) is
simply the triangle kernel 1 # j" j =N . Finally, we additively combine the expected periodograms, that is,

NS .N/.!I!/ D
N"1X

!D".N"1/

*
c.N/g ."/cZOU."/C

&
1 # j" j

N

'
cZM."/

+
e"i2"!!'; ! 2

*
# 1

20
;
1

20

+

and then minimize the objective function, given in (28), to obtain parameter estimates for ¹A;+; B; h; ˛º.
Note that the modulation of a complex-valued AR(1) process by (36) will not lead to an asymptotically sta-

tionary process, as in general we cannot expect the quantities c.N/g ."/ to converge. However, we can see from
Figure 1(a) that the drifters of our dataset have latitudes comprised between ˙20°. Therefore, the terms 2#0!¹f ºt

in (35) are comprised between ˙0:3591 radians (remembering the formula for the Coriolis frequency as a func-
tion of the latitude), so that the conditions of Proposition 6 are verified. Hence the sampled inertial component is
a modulated process with a significant correlation contribution, which justifies the use of our estimator (27). Note
that this results from both the latitudes of the drifters and the sampling rate used.

The assumption of Gaussianity is reasonable for modelling the velocity of instruments from the GDP as is dis-
cussed in Section 2.4 of LaCasce (2008) and references therein. To further inspect this, we tested the hypothesis of
Gaussianity for the specific equatorial drifter velocity dataset that is the subject of our study. The code for this test
is available online. Because the time series values are correlated in time, it would be incorrect to apply a Gaussian-
ity test to all the velocities, as such tests typically require the samples to be independent (Paparoditis and Politis,
2012). Therefore, we perform our tests on the differenced process (i.e. the accelerations, noting that if the accel-
erations are Gaussian, then the velocities are Gaussian too) where correlation will decay more quickly in time.
Furthermore, to account for any remaining correlations, we subsample the differenced time series. To choose a rel-
evant sampling step, we selected a decorrelation length common to all our velocity time series based on an analysis
inspired by Paparoditis and Politis (2012). We averaged the biased sample autocorrelation sequences and selected
the first lag from which the averaged autocorrelation sequence is within the 95% confidence interval obtained
under the hypothesis of zero correlation. The subsamples are tested via a Kolmogorov–Smirnov test with size
5%. We obtain a rejection rate of 6.5% for the overall dataset (including both longitudinal and latitudinal veloc-
ities), which is broadly consistent with a type I error rate of 5%. This shows that the assumption of Gaussianity
is reasonable.

4.1.4. Parameter Estimation with Equatorial Drifters
We now compare the likelihood estimates and parametric fits for the stationary model (29) with those for the non-
stationary version of this model described in the previous section. In particular, the damping timescale 1=+ is of
primary interest in oceanography (Elipot et al., 2010). In Figure 2, we display the frequency likelihood fits of
each model to segments of data from drifter IDs 79243, 54656 and 71845, all of which are among the trajectory
segments displayed in the left-hand panel of Figure 1. We also include model fits to a 60-inertial period window
of drifter ID 44312, which is investigated in detail in Sykulski et al. (2016c), as this South Pacific drifter is from
a more quiescent region of the ocean and does not exhibit significant changes in !¹f º. For the South Pacific
drifter in Figure 2(d), both fits are almost equivalent (and hence are overlaid), capturing the sharp peak in inertial
oscillations at approx 1.2 cycles per day. For the three equatorial drifters, the stationary model (29) has been fit
with the inertial frequency set to the average of !¹f ºt across the window. The stationary model is a relatively poor
fit to the observed time series spectra. The non-stationary modulated model, which incorporates changes in !¹f º,
is a better fit, capturing the spreading of inertial energy between the maximum and minimum values of !¹f ºt .

In this analysis, we have excluded frequencies higher than 0.8 cycles per day from all the likelihood fits to the
equatorial drifters (the Nyquist is 6 cycles per day for this 2-hourly data) to ignore contamination from tidal energy
occurring at 1 cycle per day or higher, which is not part of our stochastic model. Furthermore, we also only fit to
the side of the spectrum dominated by inertial oscillations, as the model is not always seen to be a good fit on the
other side of the spectrum. The modelling and inference approach is therefore semi-parametric (Robinson, 1995).
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Figure 2. Fitted variance of the discrete Fourier transform using either the stationary model (in black) or the non-stationary
model (in red) to the periodogram (in blue) for segments of data from drifter IDs (a) 79243, (b) 54656, (c) 71845 and (d)
44312. The solid black vertical line is the average inertial frequency, and the dashed vertical black lines are the minimum
and maximum observed inertial frequency over the observed time window. The models are fit in the frequency range of 0 to
0.8 cycles per day (a)–(c), and from 0 to 1.5 cycles per day (d) as this drifter is at a higher latitude of 37ıS where inertial
oscillations occur at a frequency of about 1.2 cycles per day. The fitted models are shown in solid lines within the frequency

range, and in dashed lines outside the frequency range

Figure 3. (a) A scatter plot of the damping timescale 1=+ as estimated by the stationary and non-stationary models, for each of
the 200 trajectories displayed in Figure 1. (b) A histogram of the difference between the log-likelihoods of the non-stationary

and stationary models for the same 200 trajectories
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The significance of the misfit of the stationary model is that parameters of the model may be underestimated
or overestimated as the model attempts to compensate for the misfit. For example, the damping parameter of the
inertial oscillations, +, will likely be overestimated in the stationary model, as it is used to try to capture the spread
of energy around !¹f º, which is in fact mostly caused by the changing value of !¹f º, rather than a true high value
of +.

To investigate this further, we perform the analysis with all 200 drifters shown in Figure 1. In Figure 3(a), we
show a scatter plot of the estimates of 1=+, known as the damping timescale, as estimated by both models. In
general, the damping timescales are larger with the non-stationary model (consistent with a smaller +), where
the median value is 3.42 days, rather than 1.3 days with the stationary model. Previous estimates of the damping
timescale in the literature have not included data from the equatorial region, so while direct comparisons are not
possible, the former estimates are found to be more consistent with previous estimates at higher latitudes where
values of around 3 days are reported in Elipot et al. (2010), and values ranging from 2 to 10 days are reported in
Watanabe and Hibiya (2002).

The non-stationary model does not require more parameters to be fitted than the stationary model; both have
five unknown parameters. Therefore, there is no need to penalize the non-stationary model using model choice
or likelihood ratio tests. Even though the models are not nested, comparing the likelihood of the two approaches
can be informative. We can directly compare the negative pseudo-likelihood value of each model using (26) with
the stationary model (denoted `S . O)S /) and the nonstationary model (denoted `NS . O)NS /). A histogram of the
difference between the likelihoods for the 200 drifters is shown in Figure 3(b), where positive values indicate
that the likelihood of the non-stationary model is higher. Overall, the non-stationary model has a smaller negative
likelihood in 146 out of the 200 trajectories and is therefore seen to be the better model in general.

There are other regions of the global oceans, in addition to the equator, where the non-stationary methods of
this article may significantly improve parameter estimates of drifter time series. These include drifters that follow
currents that traverse across different latitudes, such as the Gulf Stream or the Kuroshio. Analysis of such data is
an important avenue of future investigation.

4.1.5. Testing with Numerical Model Output
We test the accuracy of the non-stationary modelling and parameter estimation for drifters by analysing output in
a controlled setting using a dynamical model for inertial oscillations. The model propagates particles on an ocean
surface forced by winds – simulated white noise in our simulations – with a fixed damping parameter, similarly to
the damped-slab model of Pollard and Millard (1970), but uses the correct spherical dynamics for the Earth from
Early (2012) so that the oscillations occur at the correct Coriolis frequency given the particle’s latitude and the
model remains valid at the equator. The damping timescale parameter is fixed globally a priori in the model, and
the goal is to see if it can be accurately estimated using parametric time series models.

The numerical model is constructed such that the particle can also be given a linear mean flow, U C iV . If this
mean flow has a significant vertical component V , then the particle will cross different latitudes and the frequency
of inertial oscillations will significantly change over a single analysis window. We display particle trajectories from
the dynamical model in Figure 4, with various realistic mean flow values, where the spherical dynamics can clearly
be seen for larger latitudinal mean flow values. We observe that the particles subject to small mean flows display
stationary oscillation patterns, whereas for the particles with a large latitudinal mean flow, the oscillation frequency
appears to diminish as the particle approaches latitude zero. A more complete description of the numerical model
is available in the online code.

To explore the performance of the estimation of damping timescales, we assess the performance of the param-
eter estimates of our non-stationary model, by performing a Monte Carlo study based on the dynamical model
described in the previous paragraph. We generate 100 trajectories, each of length 60 days and sampled every
2 hours, for a given damping timescale (1=+) and latitudinal mean flow (V ). We estimate the damping parameter
using the stationary and non-stationary methods, in exactly the same way as with the real-world drifter data, and
average the estimated damping timescales 1=+ over the 100 time series. We note that as this model has no back-
ground turbulence, we set B D 0 in (29) such that there is no Matérn component present. We then repeat this
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Figure 4. Trajectories of nine particles from the dynamical model, with the damping timescale set to 4 days. All particle
trajectories are started at 35ıN and 40ıW with increasing meridional mean flow from V D 0:1 to V D 0:9 m/s going from left

to right (U is set to zero for this example). The drifters are offset in longitude by 0.02° for representation

Figure 5. Mean estimates of the damping timsescale 1=+with (a) the stationary model of (29) and (b) the non-stationary model
of Section 4.1.3, applied to 100 realizations of the dynamical model described in Section 4.1.5. The experiment is performed
over a grid of latitudinal mean flow values V from 0 to 0.9 cm/s, and over a range of true damping timescales 1=+ from 1
to 8 days. The estimated damping timescale values, averaged over 100 repeat experiments, is written in each cell and shaded

according to the color bar

analysis over a range of realistic values for 1=+ and V . The average estimates of 1=+ are reported in Figure 5.
The stationary method breaks down for large mean flows and long damping timescales, with large overestimates
of +, confirming our observations from the real-data analysis. The non-stationary method performs well across the
entire range of values. We note that long damping timescales are generally harder to estimate, as + becomes close
to zero and is estimated over relatively fewer frequencies. We have not reported mean-squared errors (MSEs) here
for space considerations, but we found the parameter biases to be the main contribution to the errors, so it follows
that the non-stationary method remains strongly preferable.

4.1.6. Testing with Stochastic Model Output
We test with purely stochastic output, which allows us to extensively compare biases, errors and computational
times of the stationary and non-stationary methods in a much larger Monte Carlo study. We continue using the
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bivariate model of (22), which is suitable for inertial oscillations, except this time we change ˇt according to a
stochastic process. Specifically, we set as our generative mechanism for the frequencies ˇt ,

ˇ0 D D.% C A(t /; (37)

ˇt D D.ˇt"1 C A(t /; (38)

where % 2 Œ##;#/, A > 0, (t is a standard normal white noise, and D."/ is the bounding function defined by

D.x/ D max¹min.x; % C 0/; % #0º; (39)

where 0 > 0, and this choice of D.x/ constrains ˇt in the interval Œ% #0; % C 0$. This way the frequencies ˇt
are generated according to a bounded random walk, that is, a random walk, which is constrained to stay within a
fixed bounded interval. According to Proposition 6, if 0 is smaller than #=2, then this ensures that the modulated
process belongs to the class of modulated processes with a significant correlation contribution, and our estimator
(28) is consistent.

In our simulations, we have set % D #=2, 0 D 1, A D 1=20. We simulate for a range of sample sizes ranging
from N D 128 to N D 4096. For each sample size N , we independently simulate 2000 time series and estimate
¹r; 'º for each series to report ensemble-averaged biases, errors and computational times. The results are reported
in Table I. The bias and MSE of the estimated parameters with the stationary method are seen to increase with
increasing sample size. This is because the random walk of ˇt increases the range of ˇt with larger N , such
that the non-stationarity of the time series is increasing. Conversely, the non-stationary method accounts for these
rapidly changing modulating frequencies, and the bias and MSE of parameter estimates rapidly decrease with
increasing N . The average CPU time is only around 5% slower using the non-stationary method, as the method is
still O.N logN/ in computational efficiency.

Finally, we consider the case in which the modulating sequence is only unknown up to a functional form, and
we must also estimate its parameters, along with the parameters of the latent process. We consider the following
parametric form for ˇt

ˇt D % C 0
2t # .N # 1/
2.N # 1/ ; (40)

with parameters % 2 Œ##;#/ and 0 < 0 < # . The upper bound for 0 is chosen so that the resulting modu-
lated process satisfies the assumptions of Proposition 6. The modulated process then has a significant correlation
contribution. Therefore, ˇt varies linearly from % # '

2
to % C '

2
. We can then show that for all integer value " ,

c.N/g ."/ D
sin
h

'!
2.N"1/ .N # "/

i

N sin
h

'!
2.N"1/

i e¹i.(!C '!
2.N"1/º: (41)

This allows the kernel in (3) to be precomputed in O.N / elementary operations for all values of " D 0; : : : ; N #1.
This helps to speed up the computation of the expected periodogram in the likelihood for the special case of a
linearly varying ˇt . In this problem, we have to estimate ¹%;0º from ˇt as well as ¹r; 'º from Zt . We perform a
Monte Carlo simulation with a fixed sample size of N D 512, where we simulate 5000 independent time series
each with parameters set to r D 0:9, ' D 10, % D 0:8 and 0 D 1. We report the biases, variances and MSEs with
the stationary and non-stationary methods in Table II. As the stochastic process is Markovian, it is also possible
to implement exact maximum likelihood in O.N / elementary operations for this specific problem, and we report
these values in the table also. Our non-stationary inference method performs relatively close to that of exact
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Table I. Performance of estimators with the stationary and non-stationary methods for the model of (22) with ˇt evolving
according to the bounded random walk described by (37)–(39)

Sample size (N )

128 256 512 1024 2048 4096

Stationary frequency-domain likelihood
Bias (r) "2.35e"02 "3.24e"02 "4.81e"02 "6.98e"02 "9.33e"02 "1.12e"01
Variance (r) 1.82e"03 1.08e"03 1.14e"03 1.56e"03 1.40e"03 8.29e"04
MSE (r) 2.37e"03 2.13e"03 3.46e"03 6.42e"03 1.01e"02 1.33e"02

Bias (!) 2.56e"02 5.50e"02 8.95e"02 1.32e"01 1.74e"01 2.07e"01
Variance (!) 3.39e"03 2.82e"03 3.35e"03 4.47e"03 3.99e"03 2.16e"03
MSE (!) 4.04e"03 5.84e"03 1.14e"02 2.20e"02 3.44e"02 4.48e"02

Average CPU time (seconds) .65e"03 1.27e"02 1.83e"02 3.08e"02 2.86e"02 4.81e"02

Non-stationary frequency-domain likelihood
Bias (r) "4.62e"03 "2.01e"03 "1.42e"03 "2.90e"04 "2.70e"04 8.83e"05
Variance (r) 1.65e"03 7.54e"04 3.98e"04 2.07e"04 1.07e"04 5.32e"05
MSE (r) 1.67e"03 7.58e"04 4.00e"04 2.07e"04 1.07e"04 5.32e"05

Bias (!) "1.50e"02 "8.86e"03 "4.43e"03 "2.53e"03 "1.41e"03 "9.17e"04
Variance (!) 2.25e"03 1.20e"03 6.42e"04 3.48"e04 2.01e"04 1.08e"04
MSE (!) 2.48e"03 1.28e"03 6.62e"04 3.54e"04 2.03e"04 1.08e"04

Average CPU time (seconds) 1.11e"02 1.35e"02 1.90e"02 3.02e"02 2.82e"02 4.75e"02

The parameters are set as r D 0:8, ! D 1, " D #=2, $ D 1 and A D 1=20. The results are averaged over 2000 independently
generated time series for each sample size N . The average CPU times for the optimization are given in seconds, as performed on a 3.60-
GHz Intel i7-4790MQ processor (four cores).
MSE, mean-squared error.

Table II. Performance of estimators with the stationary and non-
stationary methods for the model of (22) with ˇt evolving according

to (40)

Estimated parameter

r ! " $

Exact likelihood
Bias "1.32e"03 2.11e"02 2.12e"03 "3.61e"03
Variance 1.87e"04 5.21e"02 2.37e"04 2.83e"03
MSE 1.88e"04 5.26e"02 2.42e"04 2.85e"03

Stationary frequency-domain likelihood
Bias "1.54e"01 5.21eC00 2.59e"03 N/A
Variance 5.51e"04 8.69e"01 9.46e"03 N/A
MSE 2.42e"02 2.80eC01 9.47e"03 N/A

Non-stationary frequency-domain likelihood
Bias "1.71e"03 6.82e"03 1.14e"03 "3.71e"02
Variance 2.40e"04 1.53e"01 2.08e"03 1.64e"02
MSE 2.43e"04 1.53e"01 2.08e"03 1.78e"02

The parameters are set as r D 0:9, ! D 10, " D 0:8 and $ D 1. The
results are averaged over 5000 independently generated time series.
N/A, not applicable; MSE, mean-squared error.

maximum likelihood, despite the challenge of having to estimate parameters of the modulating sequence, as well
as the latent process. The stationary method performs poorly, as with previous examples, as stationary modelling
is not appropriate for such rapidly varying oscillatory structure.
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Table III. Performance of our estimator for the missing data problem defined in (42)–(44)

Sample size

128 512 1024 2048 4096 8192 16,384

Estimate of parameter a
Bias "2.08e"02 "4.81e"03 "3.09e"04 "4.17e"04 "2.73e"04 "4.94e"04 "1.52e"04
Variance 1.07e"02 2.71e"03 1.28e"03 6.31e"04 3.09e"04 1.44e"04 7.10e"05
MSE 1.12e"02 2.73e"03 1.28e"03 6.31e"04 3.09e"04 1.44e"04 7.10e"05

Estimate of parameter !
Bias "1.71e"02 "5.49e"03 "6.89e"03 "2.79e"03 "1.31e"03 2.29e"04 "1.74e"04
Variance 3.37e"02 8.76e"03 4.17e"03 1.94e"03 9.80e"04 4.15e"04 2.27e"04
MSE 3.40e"02 8.79e"03 4.22e"03 1.95e"03 9.81e"04 4.15e"04 2.27e"04

Computational time
Average CPU time (s) 7.82e"03 1.63e"02 2.77e"02 2.40e"02 3.99e"02 6.81e"02 1.22e"01

The unknown parameters are set as a D 0:8 and ! D 1. The results are averaged over 2000 independently generated time series for
each sample sizeN . The average CPU times for the optimization are given in seconds, as performed on a 3.60-GHz Intel i7-4790
processor (four cores). MSE, mean-squared error.

4.2. Missing Data Simulation

We show that the estimator defined in Definition 4 can be used for the random missing data scheme 3 of Section 2.2.
Therefore, we simulate a real-valued first-order autoregressive process with parameters 0 ( a < 1 and ' according
to

Xt D aXt"1 C (t ; t & 1; (42)

where X0 ) N
,
0; '2=.1 # a2/

-
, and (t is a Gaussian white noise process with mean zero and variance '2. The

process ¹Xtº is the latent process of interest. To account for the missing data, we generate a modulated time series
QXt D gtXt and assume we only observe the time series ¹ QXtº, from which we estimate the parameters of the

process ¹Xtº. The sequence ¹gtº takes its values in the set ¹0; 1º and is generated according to

gt ) B.pt /; (43)

where B.p/ represents the Bernoulli distribution with parameter p, and where we set

pt D
1

2
C 1

4
cos

&
2#

10
t

'
: (44)

The observed modulating sequence ¹gtº, made of zeros and ones, is clearly non-stationary as it does not admit a
constant expectation. Therefore, a spectral representation of the second-order structure of the random modulating
sequence ¹gtº, as required in Dunsmuir and Robinson (1981c), does not exist. We simulate and estimate such a
model for different sample sizes ranging from N D 128 to N D 16; 384. For each value of N , we independently
simulate 2000 time series, and for each time series, we estimate ¹a; 'º. The outcomes of our simulation study are
reported in Table III. The bias, variance and MSE rapidly decrease with increasing N , while the computational
time only increases gradually with N such that the methods are still computationally efficient for long time series.
Comparing our technique with other methods from the literature is the subject of ongoing work.

5. CONSISTENCY

We show in Theorem 1 that the frequency-domain estimator O!.N/M (which for simplicity we denote as O!.N/ in
this section) is consistent in the univariate real-valued case (extension to our class of bivariate processes follows

J. Time Ser. Anal. (2017) Copyright © 2017 John Wiley & Sons, Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12244



A. GUILLAUMIN ET AL.

directly). In Theorem 2, we show that this estimator converges with a O.N" 12 / rate. To guarantee consistency, we
require the following assumptions to be satisfied:

1. The parameter set ‚ $ Rd is compact with a non-null interior, and the true parameter ! lies in the interior of
‚.

2. Assume that for all ! 2 ‚, we have
P
!2N jcX ." I!/j < 1 (short memory) and that the functions ! !

cX ." I!/ are continuous with respect to ! . It follows that the spectral densities are also continuous with respect
to ! . We also assume that for all ! 2 ‚ and ! 2 Œ##;#$, SX .!I!/ > 0. By continuity on a compact set, the
spectral densities SX .!I!/ are therefore bounded below in both variables by a non-zero value. For the same
reason, they are bounded above.

3. We assume that the spectral densities are continuously differentiable with respect to both variables ! and ! .
By continuity on a compact set, the derivatives with respect to ! are bounded above, independently of ! .

4. The process QXt is a modulated process with significant correlation contribution. We recall that this implies the
existence of a finite subset & $ N such that the mapping ! 7! ¹cX ."/ W " 2 &º is one-to-one. We also assume
that the modulating sequence ¹gtº is bounded above in absolute value by some finite constant gmax > 0.

We start with the following two lemmas, which yield uniform bounds of the expected periodogram and its
derivative.

Lemma 1 (Boundedness of the expected periodogram). For all ! 2 ‚ and N 2 N, the expected periodogram
NS .N/QX .!I!/ is bounded below (by a positive real number) and above independently of N and ! . We denote these

bounds as NS QX;min and NS QX;max respectively.

Proof
See Appendix A.4.

Lemma 2 (Boundedness of the derivative of the expected periodogram). The derivative of the expected
periodogram with respect to ! exists is bounded in absolute value independently of ! and N .

Proof
See Appendix A.5.

In analogue to Taniguchi (1979) for stationary processes, we introduce the following quantity:

D.N/ ."; f / D 1

N

X
!2$N

´
log NS .N/QX .!I"/C f .!/

NS .N/QX .!I"/

µ
;

for all positive integer N , " 2 ‚ and non-negative real-valued function f defined on Œ##;#$. We also define

T .N/.f / D arg min
"2‚

D.N/ ."; f / :

This minimum for fixed f is well defined since the set ‚ is compact and since the function " 7! D.N/ ."; f /
is continuous. However, in cases where the minimum is reached not uniquely but at multiple parameter values,
T .N/.f / will denote any of these values, chosen arbitrarily. Note that by the definition of our frequency-domain
estimator, we have O!.N/ D T .N/

(
OS .N/QX ."/

)
. We derive three lemmas that will be required in proving Theorem 1,

which establishes consistency.

Lemma 3. We have, for N large enough, T .N/. NS .N/QX .!I!// D ! , uniquely.
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Proof
See Appendix A.6.

This shows that for all N large enough, the function " ! D
(
"; NS .N/QX ."I!/

)
reaches a global minimum at the

true parameter vector ! . However, because NS .N/QX ."I!/ is changing with N and is not expected to converge to a
given function, we need the following stronger result.

Lemma 4. If ¹"N ºN2N 2 ‚N is a sequence of parameter vectors such that D
(
"N ; NS .N/QX ."I!/

)
#

D
(
!; NS .N/QX ."I!/

)
converges to zero when N goes to infinity, then "N converges to ! .

Proof
See Appendix A.7.

We now show that the functions D
(
"; NS .N/QX ."I!/

)
and D

(
"; OS .N/QX ."/

)
, defined on ‚, behave asymptotically

in the same way. For this, we first need the following lemma where we bound the asymptotic variance of some
linear functionals of the periodogram.

Lemma 5. Let
®
a.N/.!/ W ! 2 Œ##;#/

¯
N2N be a family of real-valued functions, uniformly bounded by a

positive real number. We have

var

8<
:
1

N

X
!2$N

a.N/.!/ OS .N/QX .!/

9=
; D O

&
1

N

'
:

Proof
See Appendix A.8.

Remembering that NS .N/QX .!I!/ D E
°
OS .N/QX .!/I!

±
, we thus have

X
!2$N

a.N/.!/ OS .N/QX .!/ D
X
!2$N

a.N/.!/ NS .N/QX .!I!/C OP
&

1p
N

'
:

We are now able to state a consistency theorem for our estimator O!.N/.

Theorem 1 (Consistency of the frequency-domain estimator). We have O!.N/ P#! ! in probability.

Proof
The proof is based on Taniguchi (1979). Denote Nh.N/."I!/ D D

(
"; NS .N/QX .!I!/

)
and Oh.N/."/ D

D
(
"; OS .N/QX .!/

)
defined for any " 2 ‚. We have

Nh.N/."I!/ # Oh.N/."/ D 1

N

X
!2$N

´
log NS .N/QX .!I"/C

NS .N/QX .!I!/
NS .N/QX .!I"/

# log NS .N/QX .!I"/ #
OS .N/QX .!/

NS .N/QX .!I"/

µ

D 1

N

X
!2$N

NS .N/QX .!I!/ # OS .N/QX .!/

NS .N/QX .!I"/
:
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We have shown in Lemma 1 that NS .N/QX .!I"/ is bounded below in both variables ! and % by a positive real number,
independently of N and % . Therefore, making use of Lemma 5, we have

sup
(2$

ˇ̌
ˇ Nh.N/."I!/ # Oh.N/."/

ˇ̌
ˇ P#! 0; .N !1/; (45)

where the letter P indicates that the convergence is in probability, as the difference is of stochastic order N"
1
2 . In

particular, (45) implies that
ˇ̌
ˇ̌min
(

Nh.N/."I!/ #min
(

Oh.N/."/
ˇ̌
ˇ̌ ( sup

(2$

ˇ̌
ˇ Nh.N/."I!/ # Oh.N/."/

ˇ̌
ˇ P#! 0;

that is,
ˇ̌
ˇ Nh.N/

(
T .N/. NS .N/QX .!I!//I!

)
# Oh.N/

(
T .N/. OS .N/QX .!//

)ˇ̌
ˇ P#! 0: (46)

Relation (45) also implies that

ˇ̌
ˇ Nh.N/

(
T .N/. OS .N/QX .!//I!

)
# Oh.N/

(
T .N/. OS .N/QX .!//

)ˇ̌
ˇ P#! 0; (47)

so that using the triangle inequality, (46) and (47), we obtain

ˇ̌
ˇ Nh.N/

(
T .N/. OS .N/QX .!//I!

)
# Nh.N/

(
T .N/. NS .N/QX .!I!//I!

)ˇ̌
ˇ P#! 0:

We then obtain the stated theorem making use of Lemma 4.
We now study the convergence rate of our frequency-domain estimator. For this, we first need the following

two lemmas. Although the Hessian matrix of the likelihood is not expected to converge for modulated processes
with a significant correlation contribution, we can show that its norm is bounded below by a positive real number.
For this, we need to strengthen the assumption of significant correlation contribution. Assuming that the spectral
densities of the latent process are twice continuously differentiable with respect to ! , we assume that the Jacobian
determinant of the mapping ! 7! ŒcX ." I!/ W " 2 &$T taken at the true parameter value ! , that is, the determinant
of the matrix with elements @cX.!i I!/

@!j
(with & D ¹"1; "2; : : : ; "d º here), is non-zero.

Lemma 6. Let U1; : : : ;Ud a family of vectors of Rd with rank d . Let ˛1; : : : ; ˛d be positive real numbers.
There exists a positive constant C > 0 such that for all V 2 Rd ,

dX
iD1

˛2i
!
UTi V

"2 & C kVk22 ; (48)

where k " k2 denotes the Euclidean norm on RN .

Proof
See Appendix A.9.

Lemma 7. We have

@l.N/M

@)i
.!/ D OP

&
1p
N

'
: (49)

wileyonlinelibrary.com/journal/jtsa Copyright © 2017 John Wiley & Sons, Ltd J. Time Ser. Anal. (2017)
DOI: 10.1111/jtsa.12244



ANALYSIS OF NON-STATIONARY MODULATED TIME SERIES

The Hessian matrix of the function lM .!/ satisfies

H.!/ D I.!/C OP
&

1p
N

'
; (50)

where the matrix norm of I.!/ is bounded below by a positive value, independently of N .

Proof
See Appendix A.10.

Theorem 2 (Convergence rate). We have O!.N/ D ! C OP
(
1p
N

)
.

Proof
We have, by Taylor expansion with Lagrange form of the remainder term,

rlM . O!
.N/

/ D 0 D rlM .!/C H. Q!/. O!
.N/ # !/;

where Q! lies between O!.N/ and ! . Therefore,

O!.N/ # ! D #H. Q!/"1rlM .!/: (51)

We have shown that O! converges in probability to ! . By continuity of the Hessian, and using the results of
Lemma 7, we obtain

O!.N/ # ! D #
*
I.!/C OP

&
1p
N

'
C oP .1/

+"1
OP

&
1p
N

'
D OP

&
1p
N

'
: (52)

This concludes the proof.

6. CONCLUSION

The well-established theory for the analysis of stationary time series is often in contradiction with real-world data
applications. This is because most real time series are non-stationary. Non-stationary observations have required
statisticians to develop new models and more broadly new generating mechanisms. Among the large class of
non-stationary models, uniform modulation of time series is an easy way to create non-stationarity and presents
all the advantages of a simple mechanism for the time-varying second-order structure of a process. Modulation
has already been used to account for missing data when analysing stationary time series, as well as gentle time
variation. In fact, if the modulation is slow, regular theory for locally stationary time series applies. Despite its
popularity as a modelling tool, the concept of modulation, when variation can be moderate to rapid, is very poorly
understood. We have in this article shown how modulation of time series can account for much more rapid changes
of a time series model. Guinness and Stein (2013) already abandoned the assumption of smoothness in time of
the time-varying spectral density (Dahlhaus, 1997). However, the class of modulated processes with a significant
correlation contribution is one of few instances of non-stationary models where more data in time results in more
accurate estimates, and asymptotic consistency under standard assumptions for the latent stationary process.

As we have generalized modulation beyond the assumptions where it is known that models can be estimated,
the question naturally arises, as to what types of modulation still permit parameter estimation. Key to our under-
standing of modulated processes is the definition of modulated processes with a significant correlation contribution
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(Definition 3), which generalizes the classical concept of asymptotically stationary modulated processes and
corresponds to our main modelling innovation. We require that the sample autocorrelations of the modulating
sequences be asymptotically bounded below, so that the information in the autocorrelation of the process does not
fade in the observed process. The interpretation of this requirement is that there must be sufficient support in the
autocorrelation to retain the information in the modulation.

With this new model class, we can implement estimation directly in the Fourier domain, directly after trans-
forming the data from the temporal domain. Estimation is still possible in O .N logN/ computational effort, and
the further required conditions to ensure consistency were studied. Most real-world data sets are aggregations of
heterogeneous components. To fully show the promise of our newly proposed procedure, we show how estimation
is still possible in the setting of unobserved components models, where different types of processes are super-
imposed. Real-world data from the GDP show its relevance for understanding surface flow measurements at the
equator – a challenging region for studying inertial oscillations where the power of the new method shows that
despite rapid modulation we can still uncover the generating mechanism of the process.

There are a number of questions still remaining in our understanding of modulation. We have extended the
regimes when estimation is possible but do not know when an estimable process tips into one from which no
information can be recovered. By introducing a new class of models, many new questions can both be posited and
answered, especially as most sources of real-world data show aggregations of components, all obeying different
generation mechanisms.
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APPENDIX A

A.1. Proof of Proposition 4
Proof
We distinguish the case where ¹Ztº is a white noise process (the covariance is zero everywhere except for lag
zero) from the case where ¹Ztº is not a white noise process.

1. Assume ¹Ztº is a white noise process.

! Assume ¹ QZtº is a stationary process. Being stationary, it has a constant variance, and therefore, the
modulating sequence must have a constant modulus.
 Conversely, if ¹gtº has a constant modulus, ¹ QZtº is stationary and is a white noise process.

2. Assume ¹Ztº is not a white noise process. The set ¹" 2 N! W jcZ." I!/j > 0º is therefore not empty, so
! D gcd¹" 2 N! W jcZ." I!/j > 0º is well defined.

! Assume ¹ QZtº is stationary. Then it must have a constant variance, so there must exists a real number
a & 0 such that ,t D a 8t 2 N. Leaving aside the trivial case in which ¹gtº is zero everywhere, let t1; t2
be two natural integers. We have

c QZ.t1; t2I!/ D g!t1gt2cZ.t2 # t1I!/ D a
2ei.%t2"%t1 /cZ.t2 # t1I!/:

If cZ.t2 # t1I!/ ¤ 0, then

ei.%t2"%t1 / D c QZ.s; t I!/
a2cZ.t2 # t1I!/

;

which leads to

-t2 # -t1 D arg
²

c QZ.t1; t2I!/
a2cZ.t2 # t1I!/

³
mod 2#;
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where the equality is true up to a multiple of 2# , which we indicate by the use of the notation mod 2# .
Since ¹ QZtº is assumed stationary, there exists a function /, defined on ¹" 2 N W cZ." I!/ ¤ 0º, such that

arg
²

c QZ.t1; t2I!/
a2cZ.t2 # t1I!/

³
D /.t2 # t1/ mod 2#; 8t1; t2 2 N:

Therefore,

-t2 # -t1 D /.t2 # t1/ mod 2#:

Now let t 2 N be any natural integer and write t D !q C r where 0 ( r < ! and q 2 N are uniquely
defined as the remainder and quotient of the Euclidean division of t by !.

-t D
q"1X
kD0

.-rC .kC 1/& # -rC k&/C -r D
q"1X
kD0

/.!/C -r mod 2# D q/.!/C -r mod 2#:

Letting % D /.!/, we obtain

-t D %
$
t

!

%
C -t mod & mod 2#:

 Conversely assume there exists two constants % 2 R and a & 0 such that for all t 2 N,

,t D a;

-t D -t mod & C %
$
t

!

%
mod 2#:

Let t; " be two natural integers. We have

c QZ.t; t C " I!/ D g!t gtC !cZ." I!/ D a2ei.%tC !"%t /cZ." I!/:

If cZ." I!/ D 0, then c QZ D .t; t C " I!/ D 0, which does not depend on t . Otherwise, " is a multiple
of ! by definition of !. Therefore, there exists an integer q such that " D q!, and .t C "/ mod ! D t
mod !. Finally,

-tC ! # -t D -.tC !/ mod & C %
$
t C "
!

%
# -t mod & # %

$
t

!

%
mod 2#

D %
$
t

!
C q

%
# %

$
t

!

%
mod 2# D %

&$
t

!

%
C q #

$
t

!

%'
mod 2#

D %q mod 2#;

where we have used the fact that
j
t
&
C q

k
D
j
t
&

k
C q as q is an integer. Again the obtained quantity

does not depend on t . Therefore, c QZ.t; t C " I!/ does not depend on t but depend only on the lag " .
This proves that ¹ QZtº is stationary with autocovariance sequence c QZ." I!/ D a2ei(

!
& cZ."/: As for the
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spectral density of the resulting stationary modulated process ¹ QZtº, we have

S QZ.!I!/ D
1X

!D"1
c QZ." I!/e"i!! D

1X
!D"1

a2cZ." I!/e"i.!!"(
!
& / D

1X
!D"1

a2cZ." I!/e"i.!"
(
& /!

D a2
1X

!D"1
cZ." I!/e"i.!"

(
& /! D a2SZ

&
! # %

!

'
:

This concludes the proof. Note that for a real-valued process, this shift would be impossible as the spectral density
has to retain symmetry. As both Zt and QZt are complex-valued, this is not a concern.

A.2. Proof of Proposition 5

Proof
Let us define the complex-valued stochastic process ¹Ztº according to

Zt D e"i
Pt
uD1 ˇu QZt ; t D 0; 1; 2; : : : :

By applying the definition of the process ¹ QZtº, one can determine the following relationship, for all t & 1,

Zt D e"i
Pt
uD1 ˇu QZt D e"iˇt e"i

Pt"1
uD1 ˇu QZt D e"iˇt e"i

Pt"1
uD1 ˇu.reiˇt QZt"1 C (t / D re"i

Pt"1
uD1 ˇu QZt"1 C (0t ;

and finally Zt D rZt"1 C (0t ; t & 1; where (0t D e"i
Pt
uD1 ˇu(t ;8t 2 N has the same distribution as (t , as we

have assumed that the complex-valued white noise process (t has variance '2 and independent real and imaginary
parts. Therefore, the process Zt is a first-order complex-valued autoregressive process with constant stationary
parameters. It is stationary if and only if var¹Z0º D )2

1"r2 . Since Z0 D QZ0, it follows that var¹Z0º D var¹ QZ0º.
Thus if var¹ QZ0º D )2

1"r2 , the process ¹Ztº is stationary. The fact that the process ¹Ztº is proper stems from
the fact that the innovations ¹(tº as well as the random variable QZ0 are proper, as using the following relation,
Zt D r tZ0C

Pt
jD1 r

t"j (0
j

, we obtain for all t; " 2 N, E ¹ZtZtC !º D 0: This shows how the proposed process
is generated by the stated mechanism of modulation as claimed in the proposition.

A.3. Proof of Proposition 6

Proof
Let & D ¹0; 1º. We show that conditions 1 and 2 given in Definition 3 are verified.

According to Proposition 5, there exists a stationary proper complex-valued process Zt such that QZt D gtZt ,
where gt D ei

Pt
uD1 ˇu , that is, QZt is a modulated process. The autocovariance sequence of the process Zt is given

by

cZ."/ D
'2

1 # r2 r
! ; " 2 Z;

and we observe that the function .r; '/ 7! .cZ.0/; cZ.1// is one-to-one. Let L be the largest positive (i.e. greater
than or equal to 1) integer such that . ( "

2L
. This is well defined as we have assumed 0 ( . < "

2
. Fix an integer
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lag value 0 ( " ( L. We have

ˇ̌
ˇ̌
ˇ
1

N

N"1"!X
tD0

g!t gtC !

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
1

N

N"1"!X
tD0

e
i
tC !"1P
uDt

ˇu

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
1

N

N"1"!X
tD0

e
i
tC !"1P
uDt

.„C ˇu"„/
ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
1

N
ei!„

N"1"!X
tD0

e
i
tC !"1P
uDt

.ˇu"„/
ˇ̌
ˇ̌
ˇ &

1

N

ˇ̌
ˇ̌
ˇ<
´
N"1"!X
tD0

e
i
tC !"1P
uDt

.ˇu"„/
µˇ̌
ˇ̌
ˇ

D 1

N

ˇ̌
ˇ̌
ˇ
N"1"!X
tD0

cos

´
tC !"1X
uDt

.ˇu #„/
µˇ̌
ˇ̌
ˇ :

Using the triangle inequality, it follows
ˇ̌
ˇPtC !"1

uDt ˇu #„
ˇ̌
ˇ (PtC !"1

uDt jˇu #„j ( ".. With the fact that ". < "
2

by assumption, and that the cosine function is decreasing on the interval Œ0; "
2
$, we obtain

ˇ̌
ˇ̌
ˇ
1

N

N"1"!X
tD0

g!t gtC !

ˇ̌
ˇ̌
ˇ &

1

N

N"1"!X
tD0

cos."./ D .1 # "

N
/ cos."./

N!1! cos."./ > 0:

The preceding equation converges to a non-zero value asN goes to infinity, so that lim inf
N!1

ˇ̌
c.N/g ."/

ˇ̌
> 0. It is true

in particular for " 2 & .
This shows that the process QZt is a modulated process with a significant correlation contribution.

A.4. Proof of Lemma 1

Proof
We denote SX;max D max!;! SX .!I!/ and SX;min D min!;! SX .!I!/.

1. We first show the existence of the upper bound. According to Proposition 1, the expected periodogram can be
expressed, for ! 2 Œ##;#$, ! 2 ‚ and N 2 N, by

NS .N/QX .!I!/ D 2#
Z "

""
SX .! # +/S .N/g .+/d+:

Therefore,

NS .N/QX .!I!/ ( 2#SX;max

Z "

""
S .N/g .+/d+ D SX;max

1

N

N"1X
tD0
jgt j2 ;

by Parseval equality, and finally,

NS .N/QX .!I!/ ( g2maxSX;max;

and this by assumption is finite.
2. Similarly, we show the existence of a lower bound. According to the assumption of a modulated process with

significant correlation contribution, there exists a non-negative integer " 2 & and a positive real number ˛!
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such that for N large enough, c.N/g ."/ & ˛! . Then,

NS .N/QX .!I!/ & 2#SX;min

Z "

""
S .N/g .+/d+ D SX;min

1

N

N"1X
tD0
jgt j2

& SX;min
1

N

N"!"1X
tD0

jgt j2 & SX;min
1

N

vuutN"!"1X
tD0

jgt j2
vuutN"1X
tD!
jgt j2

& SX;min
1

N

ˇ̌
ˇ̌
ˇ
N"!"1X
tD0

g!t gtC !

ˇ̌
ˇ̌
ˇ ;

by Cauchy–Schwartz inequality. Hence we obtain for N large enough NS .N/QX .!I!/ & ˛!SX;min > 0: This
proves the stated result.

A.5. Proof of Lemma 2

Proof
We have for all ! 2 Œ##;#$, ! 2 ‚ and N 2 N that the form of NS .N/QX .!I!/ is given by

NS .N/QX .!I!/ D 2#
Z "

""
SX .! # +I!/S .N/g .+/d+:

We obtain (where the inversion of differentiation and integration is a consequence of the differentiability of the
functions ! ! SX .!I!/ and the fact that the spectral densities are bounded above),

ˇ̌
ˇ̌
ˇ
@ NS .N/QX
@!

.!I!/
ˇ̌
ˇ̌
ˇ D 2#

ˇ̌
ˇ̌
Z "

""

@SX

@!
.! # +I!/S .N/g .+/d+

ˇ̌
ˇ̌ ( 2# max

#;!

²ˇ̌
ˇ̌@SX
@!

.+I!/
ˇ̌
ˇ̌
³

'
Z "

""
S .N/g .+/d+ ( g2max max

!;!

²ˇ̌
ˇ̌@SX
@!

.!I!/
ˇ̌
ˇ̌
³
;

which concludes the proof.

A.6. Proof of Lemma 3

Proof
We will use repeatedly the fact that the function x ! x# log x, defined on the set of positive real numbers, admits
a global minimum for x D 1 where it takes value 1. It is an increasing function on .1;1/ and decreasing on .0; 1/.
This is easily seen by studying the derivative. Now let N be a natural integer. We have for all " 2 ‚

D."; NS .N/QX .!I!//D 1

N

X
!2$N

´
log NS .N/QX .!I"/C

NS .N/QX .!I!/
NS .N/QX .!I"/

µ

D 1

N

X
!2$N

8̂
ˆ̂̂<
ˆ̂̂̂
:

log NS .N/QX .!I!/C

$1‚ …„ ƒ
NS .N/QX .!I!/
NS .N/QX .!I"/

# log

" NS .N/QX .!I!/
NS .N/QX .!I"/

#
9>>>>=
>>>>;

& 1

N

X
!2$N

°
log NS .N/QX .!I!/C 1

±
;
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where we have an equality if and only if NS .N/QX .!I!/ D NS .N/QX .!I"/ for all ! 2 *N , which for N large enough is
equivalent to " D ! according to Proposition 3.

A.7. Proof of Lemma 4

Proof
We prove this in three steps.

1. We have for a positive integer N ,

D
(
"N ; NS .N/QX ."I!/

)
#D

(
!; NS .N/QX ."I!/

)
D 1

N

X
!2$N

´ NS .N/QX .!I!/
NS .N/QX .!I"N /

# log
NS .N/QX .!I!/
NS .N/QX .!I"N /

# 1
µ
: (A1)

By assumption, this converges to zero as N goes to infinity. For any non-negative integer " smaller than N ,
we can write

Nc.N/QX ." I"N / # Nc.N/QX ." I!/ D 1

2#

Z "

""

(
NS .N/QX .!I"N / # NS .N/QX .!I!/

)
ei!!d!; (A2)

so we have the following bound:

ˇ̌
ˇ Nc.N/QX ." I"N / # Nc.N/QX ." I!/

ˇ̌
ˇ ( 1

2#

Z "

""

ˇ̌
ˇ NS .N/QX .!I"N / # NS .N/QX .!I!/

ˇ̌
ˇ d!: (A3)

2. Now we assume, with the intent to arrive at a contradiction, that this quantity does not converge to zero. Then
there exists an increasing function -.N /, defined on the set of non-negative integers and taking values in the
set of non-negative integers and ( > 0 such that

ˇ̌
ˇ Nc.%.N//QX ." I"%.N// # Nc.%.N//QX ." I!/

ˇ̌
ˇ & (; 8N 2 N: (A4)

Fix N 2 N. Denote M as the upper bound (independent of N ) of the integrand in (A3) using
Lemma 1. Let B%.N/ $ Œ##;#$ be the inverse image of Œ(=2;1/ by the function ! 7!ˇ̌
ˇ NS .%.N//QX .!I"%.N// # NS .%.N//QX .!I!/

ˇ̌
ˇ. Let +%.N/ be the Lebesgue measure of the Borel set B%.N/. We have

( ( 1

2#

Z "

""

ˇ̌
ˇ NS .%.N//QX .!I"%.N// # NS .%.N//QX .!I!/

ˇ̌
ˇ d! ( +%.N/

2#
M C 2# # +%.N/

2#

(

2
; (A5)

and therefore,

+%.N/ &
#(

M # *
2

: (A6)

Since B%.N/ is defined such that
ˇ̌
ˇ NS .%.N//QX .!I"%.N// # NS .%.N//QX .!I!/

ˇ̌
ˇ & (

2
; 8! 2 B%.N/; (A7)

it follows that, dividing each side of (A7) by NS .%.N//QX .!I"%.N//,
ˇ̌
ˇ̌
ˇ
NS .%.N//QX .!I!/
NS .%.N//QX .!I"%.N//

# 1
ˇ̌
ˇ̌
ˇ &

(

2 NS .%.N//QX .!I"%.N//
& (

2 NS QX;max

; 8! 2 B%.N/: (A8)
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We therefore have that for all ! 2 B%.N/,
ˇ̌
ˇ NS .%.N//QX .!I!/= NS .%.N//QX .!I"%.N// # 1

ˇ̌
ˇ is bounded below by c(,

where c D 1=.2 NS QX;max/ is a positive constant independent of N . Denote

b W x ! x # log x # 1; x > 0; Nb.%.N// W ! 7! b

 NS .%.N//QX .!I!/
NS .%.N//QX .!I"%.N//

!
; ! 2 Œ##;#$:

For all ! 2 B%.N/, Nb.%.N//.!/ is bounded below by d D min.b.1C c(; 1 # c(// (where d > 0 is a constant
that depends on ( but not on N ) because of the properties of the function b.x/, which we recalled at the
beginning of the proof of Lemma 3. The function b.x/ has a bounded derivative on any interval of the form
Œa1; a2$, where 0 < a1 < a2 <1. Since

NS QX;max

NS QX;min

&
NS .%.N//QX .!I!/
NS .%.N//QX .!I"%.N//

&
NS QX;min

NS QX;max

> 0;

and using Lemmas 1 and 2, the function Nb.%.N//.!/ has a bounded derivative. We denote the corresponding
bound lmax, which is independent of N .

Recalling that +%.N/ is the measure of B%.N/, there exist T D bN#%.N/
4"
c increasing elements 11; : : : ; 1T 2

B%.N/ such that 1iC 1# 1i & 4"
N
; i D 1; : : : ; T # 1. Then there exist T # 1 Fourier frequencies 101; : : : ; 1

0
T"1,

such that 1i < 10i < 1iC 1. Then we have

ˇ̌
ˇ̌
ˇ
T"1X
iD1
Nb.%.N//.10i / # Nb.%.N//.1i /

ˇ̌
ˇ̌
ˇ (

T"1X
iD1

ˇ̌
ˇ Nb.%.N//.10i / # Nb.%.N//.1i /

ˇ̌
ˇ (

T"1X
iD1

.10i # 1i /lmax ( 2#lmax;

which implies

T"1X
iD1
Nb.%.N//.10i / &

T"1X
iD1
Nb.%.N//.1i / # 2#lmax

& .T # 1/d # 2#lmax:

Because T is of order N , we conclude that (A1) cannot converge to zero. We arrive at a contradiction.
So we obtain that for all integer " , Nc.N/QX ." I"N / # Nc.N/QX ." I!/ converges to zero when N goes to infinity.

3. In particular for " 2 & , if we denote ˛! D lim inf
N!1

ˇ̌
c.N/g ."/

ˇ̌
> 0, we have for N large enough,

ˇ̌
ˇ Nc.N/QX ." I"N / # Nc.N/QX ." I!/

ˇ̌
ˇ D

ˇ̌
ˇc.N/g ."/ .cX ." I"N / # cX ." I!//

ˇ̌
ˇ & ˛! jcX ." I"N / # cX ." I!/j ;

so that (with the assumption of high correlation contribution) jcX ." I"N / # cX ." I!/j converges to zero as N
tends to infinity. Because of the compacity of ‚, and using the fact that the function ! 7! ¹cX ."/ W " 2 &º is
one-to-one and continuous, this yields the stated lemma.

A.8. Proof of Lemma 5

Proof
Let amax be a finite positive constant such that

ˇ̌
a.N/.!/

ˇ̌
( amax;8! 2 Œ##;#/;8N 2 N. We start by looking at

the covariance matrix of the Fourier transform. We shall denote the Fourier transform, for a fixed positive integer
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N ,

J .N/QX .!/ D 1p
N

N"1X
tD0

QXte"i!t D
1p
N

N"1X
tD0

gtXte
"i!t ; ! 2 *N :

Since the expectation of the latent process is assumed to be zero, the same holds for the Fourier transform by the
linearity of the Fourier transform. Hence from the preceding linear equation, we see that the covariance matrix
elements can be expressed in the following way:

cov
°
J .N/QX .!/; J .N/QX .!0/

±
D 1

N

!
G.N/!

"H
C .N/X .!/G.N/!0 ; !; !

0 2 *N ; (A9)

where superscript H denotes the Hermitian transpose, C .N/X .!/ denotes the finite theoretical autocovariance
matrix of the latent process (i.e. with elements cX .i # j I!/, i; j D 0; : : : ; N # 1) and G.N/! is the vector
Œgte

i!t W t D 0; : : : ; N # 1$T . Using Isserlis’s theorem and the assumption of Gaussianity of the latent process
(which in turns implies the Gaussianity of the Fourier transform of the modulated process), the covariances of the
periodogram are related to the covariances of the Fourier transform according to the following simple relation:

cov
°
OS .N/QX .!/; OS .N/QX .!0/

±
D
ˇ̌
ˇcov

°
J .N/QX .!/; J .N/QX .!0/

±ˇ̌
ˇ2 : (A10)

This can be written as

cov
°
OS .N/QX .!/; OS .N/QX .!0/

±
D 1

N 2
!
G.N/!

"H
C .N/X .!/G.N/!0

(!
G.N/!

"H
C .N/X .!/G.N/!0

)H
:

D 1

N 2
!
G.N/!

"H
C .N/X .!/G.N/!0 G

.N/
!0

H
C .N/X .!/

H
G.N/! :

We then have

var

8<
:
1

N

X
!2$N

a.N/.!/ OS .N/QX .!/

9=
; D

1

N 2

X
!2$N

X
!02$N

a.N/.!/a.N/.!0/
1

N 2
!
G.N/!

"H
C .N/X .!/G.N/!0 G

.N/
!0

H
C .N/X .!/

H
G.N/!

( a2max

N 4

X
!2$N

X
!02$N

!
G.N/!

"H
C .N/X .!/G.N/!0 G

.N/
!0

H
C .N/X .!/

H
G.N/!

D a2max

N 4

X
!2$N

!
G.N/!

"H
C .N/X .!/

X
!02$N

°
G.N/!0 G

.N/
!0

H
±
C .N/X .!/

H
G.N/! ;

where the first inequality is legitimate as the covariances of the periodogram are positive real-valued numbers
(equation (A10)), and where the last equality is obtained after factorizing. Now we use the fact that

X
!02$N

°
G.N/!0 G

.N/
!0

H
±
D Ndiag.g20 ; : : : ; g

2
N"1/: (A11)
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Indeed, the .t1; t2/th term of the left-hand side of (A11) is given by

X
!02$N

gt1gt2e
i!0.t1"t2/ D

N"1X
kD0

gt1gt2e
i2k".t1"t2/

N D gt1gt2
N"1X
kD0

e
i2k".t1"t2/

N ; (A12)

where we recognize the finite sum of the geometric sequence of term e
i2".t1"t2/

N , which is N if t1 D t2, and
otherwise,

N"1X
kD0

e
i2k".t1"t2/

N D
N"1X
kD0

(
e
i2".t1"t2/

N

)k
D
1 #

(
e
i2".t1"t2/

N

)N

1 # e i2".t1"t2/N

D 0: (A13)

Therefore,

var

8<
:
1

N

X
!2$N

a.!/ OS .N/QX .!/

9=
; (

a2max

N 3

X
!2$N

!
G.N/!

"H
C .N/X .!/ diag.g20 ; : : : ; g

2
N"1/ C

.N/
X .!/HG.N/!

(A14)

( a2maxg
2
max

N 3

X
!2$N

!
G.N/!

"H
C .N/X .!/C .N/X .!/

H
G.N/! : (A15)

Therefore, we now have

var

8<
:
1

N

X
!2$N

a.!/ OS .N/QX .!/

9=
; (

a2maxg
2
max

N 3

X
!2$N

///C .N/X .!/
H
G.N/!

///
2

2
; (A16)

where k " k2 denotes the Euclidean norm on CN . For all U 2 CN , the matrix C .N/X .!/ is Hermitian, so it can be
written PDPH , where D is a diagonal matrix and P is unitary, so that

///C .N/X .!/U
///
2
( kUk2 max

+2sp
(
C
.N/
X .!/

) j2j; (A17)

where sp
(
C .N/X .!/

)
is the set of eigenvalues of C .N/X .!/. Furthermore, we have from Horn and Johnson (1985,

p. 394) that, recalling that the spectral density SX .!I!/ is assumed to be continuous in !,

max
+2sp

(
C
.N/
X .!/

) j2j D max
U2Cn

´
UHC .N/X .!/U

UHU

µ
( SX;max: (A18)

Combining (A16)–(A18) and replacing U by G.N/! ,

var

8<
:
1

N

X
!2$N

a.!/ OS .N/QX .!/

9=
; (

!
SX;max amax g

2
max

"2
N

; (A19)

as
//G.N/!

//
2
( gmax

p
N .
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A.9. Proof of Lemma 6

Proof
We first show that the proposition is true for all vectors in C D

®
V 2 Rd W kVk2 D 1

¯
, which is compact. The

function S W V 7!Pd
iD1 ˛

2
i

!
UT
i

V
"2

is continuous, so the image of C by S is compact. Since S takes non-negative
values, the image of C by S either contains zero or there exists a constant C > 0 such that it is bounded below by
C . The image of C by S cannot contain zero, as otherwise there would be a vector of Rd with norm 1 whose scalar
product with vectors Ui ; i D 1; : : : ; d is zero, which is impossible as we have assumed that the family U1; : : : ; Ud
has rank d . Therefore, there exists a constant C > 0 such that

dX
iD1

˛2i
!
UTi V

"2 & C; 8V 2 C:

Now in general, if V is any non-zero vector in Rd , we have, using the result we have derived for vectors of C,

dX
iD1

˛2i
!
UTi V

"2 D kVk22
dX
iD1

˛2i

&
UTi

V
kVk2

'2

& kVk22 C:

If V D 0 the result is obvious. This concludes the proof in the general case.

A.10. Proof of Lemma 7

Proof

1. Direct calculations give that the score function takes the form, for i D 1; : : : ; d ,

@l.N/M

@)i
.!/ D 1

N

X
!2$N

8̂
<
:̂

@ NS.N/QX
@,i

.!I!/
(
NS .N/QX .!I!/

)2
(
NS .N/QX .!I!/ # OS .N/QX .!/

)
9>=
>; :

Since by definition NS .N/QX .!I!/ D E
°
OS .N/QX .!/I!

±
, the null expectation of the score function is zero. Applying

Lemma 5, and the fact that
@ NS.N/QX
@,i

.!I!/
(
NS.N/QX .!I!/

)2 is bounded above in absolute value independently of N (as a direct

consequence of Lemmas 1 and 2), we obtain the first result.
2. Again by direct calculation, we obtain the following Hessian matrix:

@2l.N/M

@)i@)j
.!/ D 1

N

X
!2$N

8̂
<
:̂

@2 NS.N/QX
@,i @,j

.!I!/
(
NS .N/QX .!I!/

)2
# 2 NS .N/QX .!I!/@

NS.N/QX
@,i

.!I!/@
NS.N/QX
@,j

.!I!/
(
NS .N/QX .!I!/

)4

'
(
NS .N/QX .!I!/ # OS .N/QX .!/

)
C 1(
NS .N/QX .!I!/

)2
@ NS .N/QX
@)i

.!I!/
@ NS .N/QX
@)j

.!I!/

9>=
>; :
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The expectation of the Hessian matrix is therefore

I.N/.!/ D E

´
@2l.N/M

@!@!T
.!I!/

µ
D 1

N

X
!2$N

1(
NS .N/QX .!I!/

)2
@ NS .N/QX
@!

.!I!/
@ NS .N/QX
@!T

.!I!/;

where we use the notation
@ NS.N/QX
@!T

.!I!/ to denote the transpose of the gradient vector
@ NS.N/QX
@!

.!I!/. For any of
the ! 2 *N (to which corresponds a term in the above sum), and for any vector U 2 Rd ,

UT
@ NS .N/QX
@!

.!I!/
@ NS .N/QX
@!T

.!I!/U D
ˇ̌
ˇ̌
ˇ
@ NS .N/QX
@!T

.!I!/U
ˇ̌
ˇ̌
ˇ
2

& 0;

so that the matrix I.N/.!/ is non-negative definite as a sum of non-negative definite matrices. Now to show
that the matrix I.!/ is positive definite, let U D Œu1; : : : ; ud $T 2 Rd be non-zero. We have

UT I.N/.!/ U D 1

N

X
!2$N

1(
NS .N/QX .!I!/

)2UT
@ NS .N/QX
@!

.!I!/
@ NS .N/QX
@!T

.!I!/U

D 1

N

X
!2$N

1(
NS .N/QX .!I!/

)2
ˇ̌
ˇ̌
ˇ
@ NS .N/QX
@!T

.!I!/U
ˇ̌
ˇ̌
ˇ
2

D 1

N

X
!2$N

1(
NS .N/QX .!I!/

)2
 
dX
iD1

@ NS .N/QX
@)i

.!I!/ui
!2

& 1

N
(

sup!2$N NS
.N/
QX .!I!/

)2
X
!2$N

 
dX
iD1

@ NS .N/QX
@)i

.!I!/ui
!2
:

Seeing
²

1p
N

Pd
iD1 ui

@ NS.N/QX
@,i

.!I!/
³
!2$N

,
²Pd

iD1 ui
@ Nc.N/QX
@,i

." I!/
³
!D".N"1/;:::;N"1

as a finite Fourier

pair and applying Parseval’s equality, we obtain that

UT I.N/.!/ U & 1(
sup!2$N NS

.N/
QX .!I!/

)2
N"1X

!D".N"1/

 
dX
iD1

ui
@ Nc.N/QX
@)i

." I!/
!2

D 1(
sup!2$N NS

.N/
QX .!I!/

)2
N"1X

!D".N"1/

 
dX
iD1

uic
.N/
g ."/

@cX

@)i
." I!/

!2
;
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by definition of Nc.N/QX ." I!/ and noting that c.N/g ."/ does not depend on ! . Therefore,

UT I.N/.!/ U & 1(
sup!2$N NS

.N/
QX .!I!/

)2
X
!2-

 
dX
iD1

uic
.N/
g ."/

@cX

@)i
." I!/

!2
;

as long as N is larger than the greater integer value in & . Denote ˛! D lim inf
N!1

ˇ̌
c.N/g ."/

ˇ̌
> 0 for " 2 & , and

we obtain that for N large enough (equation (10)),

UT I.N/.!/ U & 1(
sup!2$N NS

.N/
QX .!I!/

)2
X
!2-

c.N/g ."/2

 
dX
iD1

ui
@cX

@)i
." I!/

!2

& 1(
sup!2$N NS

.N/
QX .!I!/

)2
X
!2-

˛2!

 
dX
iD1

ui
@cX

@)i
." I!/

!2
:

Now according to the assumption of significant correlation contribution, the mapping ! 7! ŒcX ."/ W " 2 &$T
is one-to-one, so its Jacobian taken at the true parameter vector ! is non-zero. Therefore, the family @cX

@,
." I!/ W

" 2 & has rank d , and we can apply Lemma 6, that is, we can conclude that there exists a positive constant
C > 0 such that

UT I.N/.!/ U & C kU k22 :

This implies that the norm of the expected Hessian matrix is bounded below by a positive real number.
Similarly to the gradient, using Lemma 5, we obtain the stated result for the Hessian.
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