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Summary

The Whittle likelihood is a widely used and computationally efficient pseudolikelihood. How-
ever, it is known to produce biased parameter estimates with finite sample sizes for large classes
of models. We propose a method for debiasing Whittle estimates for second-order stationary
stochastic processes. The debiased Whittle likelihood can be computed in the same O(n log n)

operations as the standard Whittle approach. We demonstrate the superior performance of our
method in simulation studies and in application to a large-scale oceanographic dataset, where in
both cases the debiased approach reduces bias by up to two orders of magnitude, achieving esti-
mates that are close to those of the exact maximum likelihood, at a fraction of the computational
cost. We prove that the method yields estimates that are consistent at an optimal convergence
rate of n−1/2 for Gaussian processes and for certain classes of non-Gaussian or nonlinear pro-
cesses. This is established under weaker assumptions than in the standard theory, and in particular
the power spectral density is not required to be continuous in frequency. We describe how the
method can be readily combined with standard methods of bias reduction, such as tapering and
differencing, to further reduce bias in parameter estimates.

Some key words: Computational efficiency; Fast Fourier transform; Frequency domain; Parameter estimation;
Pseudolikelihood.

1. Introduction

This paper introduces an improved computationally efficient method of estimating time series
model parameters for second-order stationary processes. The standard approach is to maximize
the exact time-domain likelihood, which in general has computational efficiency of order n2
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252 A. M. Sykulski et al.

for regularly spaced Gaussian observations, where n is the length of the observed time series,
and produces estimates that are asymptotically efficient, converging at a rate of n−1/2. A second
approach is the method of moments, which in general has a computational efficiency of smaller
order but with poorer statistical performance (Brockwell & Davis, 1991, p. 253), exhibiting
both bias and, often, a higher variance. A third approach is to approximate the exact likelihood,
often referred to as quasilikelihood, pseudolikelihood or composite likelihood, and has recently
been receiving much attention across statistics; see, for example, Fan et al. (2014) and Guinness
& Fuentes (2017). In time series analysis, such likelihood approximations offer the possibility
of considerable improvements in computational performance, usually scaling as order n log n,
with only small changes in statistical behaviour; see, for example, Anitescu et al. (2016). Here
we introduce a pseudolikelihood that is based on the Whittle likelihood (Whittle, 1953), which
offers dramatic decreases in bias and mean squared error in applications, yet with no significant
increase in computational cost and no loss in consistency or rate of convergence. We refer to our
pseudolikelihood as the debiased Whittle likelihood.

The Whittle likelihood (Whittle, 1953) is a frequency-domain approximation to the exact
likelihood and is considered a standard method in parametric spectral analysis on account of its
O(n log n) computational efficiency (Choudhuri et al., 2004; Fuentes, 2007; Matsuda & Yajima,
2009; Krafty & Collinge, 2013; Jesus & Chandler, 2017). However, it has been observed that the
Whittle likelihood, despite its desirable asymptotic properties, may exhibit poor behaviour when
applied to real-world, finite-length time series, particularly in terms of estimation bias (Dahlhaus,
1988; Velasco & Robinson, 2000; Contreras-Cristan et al., 2006). Bias is caused by spectral
blurring, sometimes referred to as spectral leakage (Percival & Walden, 1993). Furthermore,
when the time series model is specified in continuous time but observed discretely, there is the
added problem of aliasing, see also Eckley & Nason (2018), which if unaccounted for will further
increase bias in Whittle estimates. The challenge is to account for such sampling effects and to
debias Whittle estimates while retaining the computational efficiency of the method. We develop
such a procedure here, which can be combined with tapering and appropriate differencing, as
recommended by Dahlhaus (1988) and Velasco & Robinson (2000). This creates an automated
procedure that incorporates all modifications simultaneously, without any hand-tuning or reliance
on process-specific analytical derivations such as in Taniguchi (1983).

We compare pseudolikelihood approaches using simulated and real-world time series. In our
example from oceanography, the debiased Whittle likelihood results in parameter estimates that
are significantly closer to maximum likelihood than standard Whittle estimates, while reducing
the computational time by a factor of 100 relative to maximum likelihood, thus demonstrating
the practical utility and scalability of our method. Additionally, the theoretical properties of our
new estimator are studied under relatively weak assumptions, in contrast to Taniguchi (1983),
Dahlhaus (1988) and Velasco & Robinson (2000). Taniguchi (1983) considered autoregressive
processes that depend on a scalar unknown parameter so that analytical calculations are possible.
Dahlhaus (1988) examined processes whose spectral densities are the product of a known function
with peaks that increase with sample size and a latent spectral density that is twice continuously
differentiable in frequency.Velasco & Robinson (2000) investigated processes that exhibit power-
law behaviour at low frequencies, and their results require continuous differentiability of the
spectrum at all frequencies except zero. Our assumptions on the spectral density of the time
series will be milder. In particular, we do not require that the spectral density be continuous in
frequency. This is a useful generalization, as discontinuous spectra arise frequently, for example
in oceanography, e.g., Polzin & Lvov (2011, p. 11). Despite these weaker assumptions, we are
able to prove consistency of debiased Whittle estimates and establish a convergence rate matching
the optimal n−1/2, for large classes of Gaussian as well as non-Gaussian or nonlinear processes.
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Debiased Whittle likelihood 253

2. Definitions and notation

We shall assume that the stochastic process of interest is modelled in continuous time; however,
the debiased Whittle likelihood can be readily applied to discrete-time models, as we will demon-
strate later. We define {Xt} to be the infinite sequence obtained from sampling a continuous-time
real-valued process X (t; θ) with zero mean or a known nonzero mean such that it can be subtracted
a priori, where θ is a length-p vector that specifies the process. That is, we let Xt ≡ X (t�; θ),
where t is a positive or negative integer (t = . . . , −2, −1, 0, 1, 2, . . .) and � > 0 is the sam-
pling interval. If the process is second-order stationary, we define the autocovariance sequence
by s(τ ; θ) ≡ E{XtXt−τ } for τ = . . . , −2, −1, 0, 1, 2, . . . , where E{·} is the expectation operator.
The power spectral density of {Xt} forms a Fourier pair with the autocovariance sequence, and is
almost everywhere given by

f (ω; θ) = �

∞∑
τ=−∞

s(τ ; θ) exp(−i ωτ�), s(τ ; θ) = 1

2π

∫ π/�

−π/�

f (ω; θ) exp(i ωτ�) dω. (1)

As {Xt} is a discrete sequence, its Fourier representation is only defined up to the Nyquist frequency
±π/�. Thus, there may be departures between f (ω; θ) and the continuous-time process spectral
density, denoted by f̃ (ω; θ), which for almost all ω ∈ R is given by

f̃ (ω; θ) =
∫ ∞

−∞
s̃(λ; θ) exp(−i ωλ) dλ, s̃(λ; θ) = 1

2π

∫ ∞

−∞
f̃ (ω; θ) exp(i ωλ) dω.

Here s̃(λ; θ) ≡ E{X (t)X (t − λ)} (λ ∈ R) is the continuous-time process autocovariance, which
is related to s(τ ; θ) via s̃(τ�; θ) = s(τ ; θ) when τ is an integer. It follows that

f (ω; θ) =
∞∑

k=−∞
f̃

(
ω + k

2π

�
; θ
)

, ω ∈ [−π/�, π/�]; (2)

see Percival & Walden (1993). Thus, contributions to f̃ (ω; θ) outside the range of frequencies
±π/� are said to be folded or wrapped into f (ω; θ). We have defined both f (ω; θ) and f̃ (ω; θ),
as both quantities are important in separating aliasing from other artefacts in spectral estimation.

In addition to these theoretical quantities, we will also require certain quantities that are
computed directly from a single length-n sample {Xt}n

t=1. A widely used but inconsistent estimate
of f (ω; θ) is the periodogram, denoted by I (ω), which is the squared absolute value of the discrete
Fourier transform:

I (ω) ≡ |J (ω)|2, J (ω) ≡
(

�

n

)1/2 n∑
t=1

Xt exp(−i ωt�), ω ∈ [−π/�, π/�]. (3)

Note that I (ω) and J (ω) are taken to be properties of the observed realization and are formally
not regarded as functions of θ .

3. Maximum likelihood and the Whittle likelihood

Consider the discrete sample X = {X }n
t=1, which is organized as a length-n column vector.

Under the assumption that X is drawn from X (t; θ), the expected n × n autocovariance matrix is
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254 A. M. Sykulski et al.

C(θ) ≡ E{XX T}, where T denotes transpose, and the components of C(θ) are given by Cij(θ) =
s(i−j; θ). Exact maximum likelihood inference can be performed for Gaussian data by evaluating
the loglikelihood function (Brockwell & Davis, 1991, p. 254),

�(θ) = − log |C(θ)| − X TC−1(θ)X , (4)

where −1 denotes matrix inverse and |C(θ)| is the determinant of C(θ). In (4) we have omitted
additive and multiplicative constants not affected by θ . The optimal choice of θ for our chosen
model to characterize the sampled time series X is then found by maximizing the loglikelihood
function in (4) so that

θ̂ = arg max
θ∈	

�(θ),

where 	 defines the parameter space of θ . Because the time-domain maximum likelihood is
known to have optimal properties, any other estimator will be compared with the properties of
this quantity.

A standard technique for avoiding expensive matrix inversions is to approximate (4) in the
frequency domain, following the seminal work of Whittle (1953). In this approach C(θ) is approx-
imated using a Fourier representation, and special properties of Toeplitz matrices are utilized.
Given the observed sampled time series X , the Whittle likelihood, denoted by �W(θ), is

�W(θ) ≡ −
∑
ω∈


{
log f̃ (ω; θ) + I (ω)

f̃ (ω; θ)

}
, (5)

where 
 is the set of discrete Fourier frequencies,


 ≡ (ω1, ω2, . . . , ωn) = 2π

n�

(−�n/2� + 1, . . . , −1, 0, 1, . . . , �n/2�). (6)

We have presented the Whittle likelihood in a discretized form here, as its usual integral represen-
tation must be approximated for finite-length time series. The Whittle likelihood approximates
the time-domain likelihood, i.e., �(θ) ≈ �W(θ), and this statement can be made precise (Dzha-
paridze & Yaglom, 1983). Its computational efficiency is O(n log n) as the periodogram can be
computed using the fast Fourier transform, thus explaining its popularity in practice. Exact max-
imum likelihood, on the other hand, would require O(n2) computations for regularly sampled
Gaussian processes, using for example the Trench algorithm (Trench, 1964) to compute (4), and
often has higher complexity for non-Gaussian processes, as demonstrated by our non-Gaussian
simulation example in the Supplementary Material.

The Whittle likelihood (5) is calculated using the periodogram, I (ω). This spectral estimate,
however, is known to be a biased measure of the continuous-time process’s spectral density for
finite samples, due to blurring and aliasing effects (Percival & Walden, 1993). Aliasing results
from the discrete sampling of the continuous-time process to generate an infinite sequence,
whereas blurring is associated with the truncation of this infinite sequence over a finite-time
interval. The desirable properties of the Whittle likelihood rely on the asymptotic behaviour of
the periodogram for large sample sizes. The bias of the periodogram for finite samples, however,
will translate into biased parameter estimates from the Whittle likelihood, as has been widely
reported (e.g., Dahlhaus, 1988). In the next section we propose a procedure for debiasing Whittle
estimates.
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4. Modified pseudolikelihoods

4.1. The debiased Whittle likelihood

We introduce the pseudolikelihood function

�D(θ) ≡ −
∑
ω∈


{
log f̄n(ω; θ) + I (ω)

f̄n(ω; θ)

}
, (7)

f̄n(ω; θ) =
∫ π/�

−π/�

f (ν; θ)Fn,�(ω − ν) dν, Fn,�(ω) ≡ �

2πn

sin2(nω�/2)

sin2(ω�/2)
, (8)

where a subscript D stands for debiased. Here f̃ (ω; θ) in (5) has been replaced by f̄n(ω; θ) ≡
E{I (ω)}, which is the expected periodogram, and can be shown to be given by the convolution
of the true modelled spectrum with the Fejér kernel Fn,�(ω). We call (7) the debiased Whittle
likelihood, where the set 
 is defined as in (6).

Replacing the true spectrum f̃ (ω; θ) with the expected periodogram f̄n(ω; θ) in (7) is a straight-
forward concept; however, our key innovation lies in formulating its efficient computation without
losing O(n log n) efficiency. If we directly use (8), then this convolution would usually need to be
approximated numerically and could be computationally expensive. Instead we utilize the con-
volution theorem to express the frequency-domain convolution as a time-domain multiplication
(Percival & Walden, 1993, p. 198), such that

f̄n(ω; θ) = 2� × Re

{
n−1∑
τ=0

(
1 − τ

n

)
s(τ ; θ) exp(−i ωτ�)

}
− � × s(0; θ), (9)

where Re{·} denotes the real part. Therefore f̄n(ω; θ) can be exactly computed at each Fourier
frequency directly from s(τ ; θ), provided its functional form is known for τ = 0, . . . , n − 1,
by using a fast Fourier transform in O(n log n) operations. Care must be taken to subtract the
variance term, � × s(0; θ), to avoid double counting contributions from τ = 0. Both aliasing
and blurring effects are automatically and conveniently accounted for in (9) in one operation;
aliasing is accounted for by sampling the theoretical autocovariance function at discrete times,
while the effect of blurring is accounted for by the truncation of this sequence to finite length and
the inclusion of the triangle function (1 − τ/n) in the expression. The result is that f̄n(ω; θ) is a
blurred and aliased version of the true spectrum f̃ (ω; θ), which reflects the blurring and aliasing
artefacts present in the periodogram.

The debiased Whittle likelihood can also be used with discrete-time processes, as (9) can be
computed from the theoretical autocovariance sequence of the discrete process in exactly the
same way. If the analytical form of s(τ ; θ) is unknown or expensive to evaluate, then it can be
approximated from the spectral density using fast Fourier transforms, thus maintaining O(n log n)

computational efficiency.
Computing the standard Whittle likelihood of (5) with the aliased spectrum f (ω; θ) defined in

(1), without accounting for spectral blurring, would in general be more complicated than using
the expected periodogram f̄n(ω; θ). This is because the aliased spectrum f (ω; θ) seldom has an
analytical form for continuous processes, and must instead be approximated either by explicitly
wrapping in contributions from f̃ (ω; θ) from frequencies higher than the Nyquist frequency as
in (2), or via an approximation to the Fourier transform in (1). This is in contrast to the debiased
Whittle likelihood, where the effects of aliasing and blurring have been computed exactly in
a single operation using (9). Thus, addressing aliasing and blurring together by means of the
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256 A. M. Sykulski et al.

debiased Whittle likelihood is simpler and computationally faster to implement than accounting
for aliasing alone. This will become further apparent in the simulation studies of § 5.1.

4.2. Combining with differencing or tapering

A standard technique for reducing the effects of blurring on Whittle estimates is to apply the
Whittle likelihood to the differenced process (Velasco & Robinson, 2000), as often differencing
will decrease the dynamic range of the spectrum and hence decrease broadband blurring. The
debiased Whittle likelihood can be readily implemented with differenced data. If we denote the
differenced process by Ut = Xt+1 − Xt , then the expected periodogram of (9) can be computed
using the autocovariance of Ut , which is found from the autocovariance of Xt via sU (τ ) ≡
E{UtUt−τ } = 2sX (τ ) − sX (τ + 1) − sX (τ − 1), so that the procedure remains O(n log n).

Another standard approach to ameliorating the effects of blurring is to premultiply the data
sequence by a weighting function known as a data taper (Thomson, 1982). The taper is chosen to
have spectral properties such that broadband blurring will be minimized, and the variance of the
spectral estimate at each frequency is reduced, although the trade-off is that tapering increases
narrowband blurring as the correlation between neighbouring frequencies increases.

The tapered Whittle likelihood (Dahlhaus, 1988) corresponds to replacing the direct spectral
estimator formed from I (ω) in (3) with one using the taper h = {ht}:

J (ω; h) ≡ �1/2
n∑

t=1

htXt exp(−i ωt�), I (ω; h) ≡ |J (ω; h)|2,
n∑

t=1

h2
t = 1, (10)

where ht is real-valued. Setting ht = 1/n1/2 for t = 1, . . . n recovers the periodogram estimate
of (5). To estimate parameters, we then maximize

�T(θ) ≡ −
∑
ω∈


{
log f̃ (ω; θ) + I (ω; h)

f̃ (ω; θ)

}
, (11)

where a subscript T indicates that a taper has been used.Velasco & Robinson (2000) demonstrated
that for certain discrete processes it is beneficial to use this estimator, rather than the standard
Whittle likelihood, for parameter estimation, particularly when the spectrum exhibits a high
dynamic range. Nevertheless, tapering will not remove all broadband blurring effects in the
likelihood, because we are still comparing the tapered spectral estimate against the theoretical
spectrum, and not against the expected tapered spectral estimate. Furthermore, there remain the
issues of narrowband blurring and aliasing effects with continuous sampled processes.

Our debiasing procedure can be naturally combined with tapering. We define the pseudolike-
lihood

�TD(θ) ≡ −
∑
ω∈


{
log f̄n(ω; h, θ) + I (ω; h)

f̄n(ω; h, θ)

}
, (12)

f̄n(ω; h, θ) =
∫ π/�

−π/�

f (ν; θ)Hn,�(ω − ν) dν, Hn,�(ω) ≡ �

∣∣∣∣∣
n∑

t=1

ht exp(−i ωt�)

∣∣∣∣∣
2

,

with I (ω; h) as defined in (10) such that f̄n(ω; h, θ) ≡ E{I (ω; h)}. We call �TD(θ) the debiased
tapered Whittle likelihood and f̄n(ω; h, θ) the expected tapered spectral estimate. The function
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Debiased Whittle likelihood 257

f̄n(ω; h, θ) can be computed exactly using a O(n log n) calculation similar to (9); that is,

f̄n(ω; h, θ) = 2� × Re

{
n−1∑
τ=0

s(τ ; θ)

(
n−τ∑
t=1

htht+τ

)
exp(−i ωτ�)

}
− � × s(0; θ).

Accounting in f̄n(ω; h, θ) for the particular taper used accomplishes debiasing of the tapered
Whittle likelihood, just as using the expected periodogram does for the standard Whittle like-
lihood. The time-domain kernel

∑n−τ
t=1 htht+τ (τ = 0, . . . , n − 1) can be pre-computed using

fast Fourier transforms or using a known analytical form. Then, during optimization, a fast
Fourier transform of this fixed kernel multiplied by the autocovariance sequence is taken at each
iteration. Thus the debiased tapered Whittle likelihood is also an O(n log n) pseudolikelihood
estimator.

Both the debiasedWhittle and the debiased taperedWhittle likelihoods have their merits, but the
trade-offs are different with nonparametric spectral density estimation than with parametric model
estimation. Specifically, although tapering decreases the variance of nonparametric estimates
at each frequency, it conversely may increase the variance of estimated parameters. This is
because the taper reduces the degrees of freedom in the data, which increases correlations between
local frequencies. On the other hand, the periodogram creates broadband correlations between
frequencies, especially for processes with high dynamic range, which also contributes to variance
in parameter estimates. We explore these trade-offs in greater detail in § 5.1.

5. Simulations and applications

5.1. The Matérn process

In this section we investigate the performance of the debiased Whittle likelihood in a Monte
Carlo study using observations from a Matérn process (Matérn, 1960), as motivated by the simu-
lation studies ofAnitescu et al. (2012), who investigated the same process. The Matérn process is a
three-parameter continuous Gaussian process defined by its continuous-time unaliased spectrum

f̃ (ω) = A2

(ω2 + c2)α
, ω ∈ R. (13)

The parameter A � 0 determines the magnitude of the variability, 1/c > 0 is the damping
time-scale, and α > 1/2 controls the rate of spectral decay, or equivalently the smoothness or
differentiability of the process. For large α the power spectrum exhibits a high dynamic range,
and the periodogram will be a poor estimator of the spectral density due to blurring. Conversely,
for small α there will be departures between the periodogram and the continuous-time spectral
density because of aliasing. We therefore investigate the performance of estimators over a range
of α values, and this is the reason why the Matérn process is a suitable process to study.

In Table 1 we display the average percentage bias, standard deviation and root mean square
error, relative to the true parameter values, for six different pseudolikelihoods: the standardWhittle
likelihood, (5), with the observed and the differenced processes; the tapered Whittle likelihood
(11); and the debiased versions, (7) and (12). Our choice of data taper is the discrete prolate
spheroidal sequence taper (Slepian & Pollak, 1961), with bandwidth parameter 4, for which
performance was found to be broadly similar across different choices of bandwidth. We also
include results for the exact maximum likelihood, (4). The results are averaged over estimates of
the three parameters {A, α, c}, all assumed to be unknown, where the true α varies from 0.6 to 2.5
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258 A. M. Sykulski et al.

Table 1. Average percentage bias, standard deviation, and root mean square
error relative to the true parameter values for a Matérn process across all

estimates of {A, α, c} with n = 1000
Inference method Equation Bias SD RMSE

Standard Whittle (periodogram) (5) 23.69% 10.34% 26.66%
Debiased Whittle (periodogram) (7) 3.96% 12.97% 13.75%
Standard Whittle (tapered) (11) 18.11% 12.23% 23.12%
Debiased Whittle (tapered) (12) 2.60% 14.15% 14.41%
Standard Whittle (differenced) (5) 18.99% 9.33% 22.09%
Debiased Whittle (differenced) (7) 1.19% 8.90% 8.99%
Maximum likelihood (4) 1.10% 7.60% 7.68%

SD, standard deviation; RMSE, root mean square error.

in increments of 0.1 and we fix A = 1 and c = 0.2. This is to explore performance over spectra
that have aliasing artefacts as well as high dynamic range. For each value of α, we simulate
10 000 time series, each of length n = 1000. The optimization is performed in Matlab using
fminsearch, under identical settings for all likelihoods. Initialized guesses for the slope and
amplitude are found using a least squares fit in the range [π/4�, 3π/4�], and the initial guess
for the damping parameter c is set at a mid-range value of 100 times the Rayleigh frequency, i.e.,
c = 100π/n = π/10.

All standard Whittle methods have performance significantly contaminated by bias. The debi-
ased variants decrease this bias by an order of magnitude. The standard deviation is broadly
similar across all Whittle methods, and tapering results in standard deviations that are approxi-
mately twice that of maximum likelihood, which is consistent with the loss of information from
using a data taper. Of all the pseudolikelihood estimators considered, the debiased Whittle likeli-
hood using the differenced process performs best, and yields results close to the exact maximum
likelihood. Overall, of the three modifications to the standard Whittle likelihood, debiasing, taper-
ing and differencing, the debiasing method proposed here is the procedure that yields the greatest
overall improvement in parameter estimation.

In the Supplementary Material, we present a figure which separates out the bias and root mean
square error improvements over different values of α, demonstrating that the debiased Whittle
likelihood can effectively reduce bias from aliasing when α is low and bias from blurring when
α is high. In the Supplementary Material we also include a comparison with a time-domain
O(n log n) estimator from Anitescu et al. (2012), which is found to perform similarly to the
debiased Whittle likelihood with differenced data in terms of bias and root mean square error,
although the latter method requires only a fraction of the computational time.

In the next section we will prove that the debiased Whittle likelihood is a consistent estimator
converging at the optimal n−1/2 rate, under assumptions which are satisfied by the Matérn process.
Motivated by this, we perform an additional experiment over different lengths of time series
n = 2k , with k taking integer values from 7 to 13, so that n ranges from 128 to 8192. To isolate
the convergence of the parameter estimate, we fix A = 1 and c = 0.2 as before but this time
assume that these are known, and now only estimate the slope parameter, which we set to α = 2.

The average bias, standard deviation and root mean square error of each estimator are plotted
in Fig. 1, together with average CPU times. We show results for the standard and debiased
Whittle likelihoods, as well as the exact maximum likelihood. Motivated by Table 1, we include
the debiased Whittle likelihood with differenced data. Finally, we also report results for the
standard Whittle likelihood using an approximated aliased spectrum, which we find using (2) by
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Fig. 1. Performance in terms of (a) absolute bias, (b) standard deviation, (c) root mean square error, and (d) CPU time
of five different likelihoods: standard Whittle unaliased (blue dashed); standard Whittle aliased (blue dot-dashed);
debiased Whittle periodogram (blue solid); debiased Whittle differenced (red solid); and exact maximum likelihood
(black solid). Results were obtained over 1000 repetitions for various values of n when estimating the slope parameter
(α = 2) of a Matérn process. The axes are on a log-log scale, and CPU times are for computations performed on a

2.2 GHz Intel Core i7 processor.

truncating the summation limits to ±5 to keep the computation efficient. The reason for including
an approximate aliased version of the standard Whittle likelihood is to show that bias corrections
are made by the debiased Whittle likelihood with regard to both blurring and aliasing. Here we
see that the standard Whittle likelihood using the unaliased spectrum of (13) performs poorly
with increasing n due to bias; this is because for growing domain asymptotics, bias due to aliasing
does not decrease as n increases.

The standard deviations of all estimates converge at a rate consistent with n−1/2, asTheorem 1 in
§ 6.1 will establish for debiased methods. Overall, the debiased approaches provide a good balance
between statistical and computational efficiency over all sample sizes, whereas, in contrast, exact
maximum likelihood is computed only up to n = 2048 due to rapidly increasing computational
costs. For clarity of presentation the standard Whittle likelihood with differenced data is not
included but was found to perform worse than the debiased Whittle likelihood with differenced
data, consistent with the results in Table 1.

5.2. Application to large-scale oceanographic data

In this subsection we examine the performance of our method when applied to a real-
world large-scale dataset, by analysing data obtained from the Global Drifter Program
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Fig. 2. The top row displays 50-day trajectories of drifters #2339255 (Atlantic Ocean), #49566 (Pacific Ocean) and
#43577 (Indian Ocean). The middle row plots the corresponding east/west (red solid) and north/south (blue dashed)
velocity time series for each trajectory. The bottom row shows the non-inertial (red solid) and inertial (blue dashed)
sides of the periodogram of the complex-valued velocity series; the expected periodogram, f̄n(ω; θ̂ ), from the debiased

Whittle likelihood is overlaid in black, and the frequency axis is on a logarithmic scale.

http://www.aoml.noaa.gov/phod/dac/index.php, which maintains a publicly
downloadable database of position measurements taken by freely drifting satellite-tracked oceanic
instruments known as drifters. In total more than 23 000 drifters have been deployed, with inter-
polated six-hourly data available since 1979 and one-hourly data since 2005 (Elipot et al., 2016);
over 100 million data points are available in total. Such data are pivotal to the understanding of
ocean circulation and its impact on the global climate system (Griffa et al., 2007); it is therefore
essential to have computationally efficient methods for their analysis.

In Fig. 2 we display 50-day position trajectories and corresponding velocity time series for
three drifters from the one-hourly dataset, each from a different major ocean. These trajecto-
ries can be considered as complex-valued time series, with the real part corresponding to the
east/west velocity component and the imaginary part corresponding to the north/south velocity
component. We then plot the periodogram of the complex-valued series, which has different pow-
ers at positive and negative frequencies, distinguishing directions of rotation on the complex plane
(Schreier & Scharf, 2010). The debiased Whittle likelihood for complex-valued proper processes
is exactly the same as (7)–(9), see also Sykulski et al. (2016), where the autocovariance sequence
of a complex-valued process Zt is s(τ ; θ) = E(ZtZ∗

t−τ ). For proper processes the complemen-
tary covariance is r(τ ; θ) = E(ZtZt−τ ) = 0 at all lags (Schreier & Scharf, 2010) and can
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Table 2. Estimated Matérn parameters (with corresponding estimated standard errors in paren-
theses) using the maximum, debiased Whittle, and standard Whittle likelihoods for the velocity
time series of Fig. 2; the parameters are given in terms of the damping timescale 1/c, the
slope 2α, and the diffusivity κ; CPU times are for computations performed on a 2.8 GHz

Intel Core i7 processor
Drifter Inference Damping Slope Diffusivity CPU
location method (days) (dimensionless) (m2/s ×103) (s)

Maximum likelihood 10.65 (2.49) 1.460 (0.023) 0.49 (0.18) 7.42
Atlantic Debiased Whittle 9.84 (5.51) 1.462 (0.062) 0.44 (0.28) 0.16

Standard Whittle 30.19 (16.2) 1.097 (0.043) 0.65 (0.36) 0.04

Maximum likelihood 10.62 (1.85) 1.829 (0.024) 5.09 (1.71) 7.47
Pacific Debiased Whittle 11.82 (4.64) 1.827 (0.048) 6.00 (3.83) 0.10

Standard Whittle 19.59 (6.51) 1.575 (0.036) 7.18 (3.60) 0.02

Maximum likelihood 21.76 (4.83) 1.825 (0.025) 30.48 (12.9) 10.06
Indian Debiased Whittle 19.90 (9.41) 1.802 (0.053) 22.70 (17.2) 0.10

Standard Whittle 39.99 (16.9) 1.545 (0.038) 31.19 (19.7) 0.02

therefore be ignored in the likelihood, as s(τ ; θ) captures all the second-order structure in the
zero-mean process.

We model the velocity time series as a complex-valued Matérn process, with power spectral
density given in (13), as motivated by Sykulski et al. (2016) and Lilly et al. (2017). To account
for a type of circular oscillations in each time series known as inertial oscillations, which create
an off-zero spike on one side of the spectrum, we fit the Matérn process semiparametrically to the
opposite, non-inertial side of the spectrum, represented by the solid red lines in the bottom row of
Fig. 2; we overlay the fit of the debiased Whittle likelihood on the periodograms in Fig. 2. For a
full parametric model of surface velocity time series, see Sykulski et al. (2016). We have selected
drifters without noticeable tidal effects; for detiding procedures see Pawlowicz et al. (2002).

We estimate the Matérn parameters for each time series using the debiased and regular Whittle
likelihoods, as well as the exact maximum likelihood. The last of these methods can be performed
over only positive or negative frequencies by first decomposing the time series into analytic and
anti-analytic components using the discrete Hilbert transform (see Marple, 1999) and then fitting
the corresponding signal to an adjusted Matérn autocovariance that accounts for the effects of
the Hilbert transform. The details of this procedure are provided in the Supplementary Material.

The parameter estimates from the three likelihoods are displayed in Table 2 along with the
corresponding CPU times. We also report the estimated parameter standard errors using the
method described in § 6.2, with more details in the online code. We reparameterize the Matérn
process to output three important oceanographic quantities: the damping time-scale, the decay rate
of the spectral slope, and the diffusivity, which is the rate of particle dispersion,κ ≡ A2/4c2α (Lilly
et al., 2017, equation (43)). From Table 2 it can be seen that the debiased Whittle and maximum
likelihoods yield similar values for the slope and damping time-scale; however, regular Whittle
likelihood yields parameters that underestimate the slope by around 15% and overestimate the
damping time-scale by a factor of two, which if used would incorrectly specify underdamped
and rougher-than-expected trajectories. These biases are consistent with the significant biases
discussed in § 5.1. Diffusivity estimates vary across all estimation procedures and have large
standard errors; this variability is likely due to the fact that diffusivity is a measure of the spectrum
at frequency zero, and hence estimation is performed over relatively few frequencies.

The maximum likelihood is two orders of magnitude slower to execute than the debiased Whit-
tle likelihood. When this is scaled to fitting all time series in the Global Drifter Program database,
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Table 3.Average parameter estimates and root mean square errors when estimating all five ar(4)

parameters using different estimation methods, for n = 256 and n = 1024; results are obtained
over 1000 replicated time series for each time series length

ar(4) Parameters: φ1 = 2.7607 φ2 = −3.8106 φ3 = 2.6535 φ4 = −0.9238 σ = 1

n = 256
Average parameter estimate

Yule–Walker 1.7669 −1.6555 0.6081 −0.1685 4.3621
Standard Whittle 1.8989 −1.9485 0.8895 −0.2746 4.0231
Debiased Whittle 2.5309 −3.3065 2.1754 −0.7439 1.5341
Maximum likelihood 2.7478 −3.7490 2.5799 −0.8798 1.0525

Root mean square error
Yule–Walker 1.0591 2.2725 2.1473 0.7861 3.6499
Standard Whittle 0.9800 2.0775 1.9523 0.7076 3.5326
Debiased Whittle 0.5136 1.0539 0.9777 0.3456 1.7368
Maximum likelihood 0.0330 0.1618 0.2031 0.1318 0.2320

n = 1024
Average parameter estimate

Yule–Walker 2.1959 −2.5237 1.4004 −0.4328 2.9207
Standard Whittle 2.2642 −2.6878 1.5644 −0.5008 2.7092
Debiased Whittle 2.7030 −3.6704 2.5161 −0.8665 1.0370
Maximum likelihood 2.7574 −3.8006 2.6428 −0.9185 1.0028

Root mean square error
Yule–Walker 0.6409 1.4513 1.4094 0.5489 2.1214
Standard Whittle 0.6225 1.3923 1.3441 0.5164 2.0663
Debiased Whittle 0.2001 0.4346 0.4133 0.1550 0.6632
Maximum likelihood 0.0131 0.0438 0.0526 0.0326 0.0623

time-domain maximum likelihood becomes impractical. The debiased Whittle likelihood, on the
other hand, retains the speed of theWhittle likelihood while returning estimates that are close to the
maximum likelihood. The results of this subsection therefore serve as a proof of concept of how the
debiased Whittle likelihood is a useful tool for efficient parameter estimation from large datasets.

5.3. Autoregressive processes

We now investigate the performance of the debiased Whittle likelihood in estimating parame-
ters of a discrete-time autoregressive process, Xt = ∑p

k=1 φkXt−k + εt , where εt are independent
and identically distributed as N (0, σ 2). Specifically, we generate time series from the ar(4)
autoregressive process studied in Percival & Walden (1993), used throughout the book as a moti-
vating example of a process that generates high spectral blurring in spectral density estimation.
As the process is in discrete-time, there is no issue with aliasing, so this example assesses how
well the debiased Whittle likelihood accounts for bias that is purely due to blurring.

In Table 3 we display the average parameter estimates and root mean square errors in esti-
mating all five parameters of the ar(4) process {φ1, φ2, φ3, φ4, σ }. We compare four approaches:
maximum likelihood, the standard Whittle likelihood, the debiased Whittle likelihood, and the
standard Yule–Walker estimation procedure, which is used to initialize parameter estimates for
the likelihood-based methods. We do not include results obtained using the differenced process,
as it was not found to give improved parameter estimates for this particular example.

The Yule–Walker and standard Whittle estimates perform similarly and quite poorly for both
sample sizes considered, which is consistent with the fact that the former uses the biased sample
autocovariance to solve the Yule–Walker equations, while the latter uses the periodogram, which
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is the Fourier pair of the biased sample autocovariance. The debiased Whittle likelihood accounts
for this bias and yields average estimates that are close to the exact maximum likelihood and the
true values; it eliminates around half the root mean square error when n = 256, and two thirds
when n = 1024. The debiased Whittle likelihood is therefore an effective pseudolikelihood
for discrete-time as well as continuous-time processes. In the Supplementary Material we report
further simulation results, including a performance comparison for a non-Gaussian process, where
again the debiased Whittle likelihood is found to provide a good trade-off between statistical and
computational efficiency.

6. Properties of the debiased Whittle likelihood

6.1. Consistency and optimal convergence rates

We now establish consistency and optimal convergence rates for debiased Whittle estimates
with Gaussian and certain classes of non-Gaussian or nonlinear processes. To show that debiased
Whittle estimates converge at the optimal rate, the main challenge is that although our pseudo-
likelihood accounts for the bias of the periodogram, correlation between different frequencies
caused by the leakage associated with the Fejér kernel is still present. This is what prevents the
debiased Whittle likelihood from being exactly equal to the time-domain maximum likelihood for
Gaussian data. To establish optimal convergence rates, we bound the asymptotic behaviour of this
correlation. The statement is provided in Theorem 1, with the proof given in the Supplementary
Material. The proof is composed of several lemmas, which, for example, place useful bounds on
the expected periodogram, the variance of linear combinations of the periodogram at different
frequencies, and also the first and second derivatives of the debiased Whittle likelihood. Together
these establish that the debiased Whittle likelihood is a consistent estimator with estimates that
converge in probability at an optimal rate of n−1/2, under relatively weak assumptions.

Theorem 1. Assume that {Xt} is an infinite sequence obtained from sampling a zero-mean
continuous-time real-valued process X (t; θ) which satisfies the following assumptions:

(i) the parameter set 	 ⊂ R
p is compact with a nonnull interior, and the true length-p

parameter vector θ lies in the interior of 	;
(ii) for all θ ∈ 	 and ω ∈ [−π , π ], the spectral density of the sequence {Xt} is bounded below

by f (ω; θ) � fmin > 0 and bounded above by f (ω; θ) � fmax;
(iii) θ1 |= θ2 implies f (· ; θ1) |= f (· ; θ2) on a set of positive Lebesgue measure;
(iv) f (ω; θ) is continuous in θ and Riemann-integrable in ω;
(v) the expected periodogram f̄n(ω; θ), as defined in (9), has two continuous derivatives in θ

which are bounded above in magnitude uniformly for all n, and the first derivative in θ also
has 	(n) frequencies in 
 that are nonzero;

(vi) {Xt} is a fourth-order stationary process with finite fourth-order moments and absolutely
summable fourth-order cumulants.

Then the estimator θ̂ = arg maxθ∈	 �D(θ) for a sample {Xt}n
t=1, where �D(θ) is the debiased

Whittle likelihood of (7), satisfies θ̂ = θ + Op(n−1/2).

The fourth-order cumulant is formally defined in the Supplementary Material. All stationary
Gaussian processes automatically satisfy assumption (vi) as the fourth-order cumulant is identi-
cally zero. In the Supplementary Material we consider a class of nonlinear processes and prove
that it satisfies assumption (vi). Specifically, we study the process Yt = X 2

t where Xt is a Gaussian
process with bounded spectral density and absolutely summable autocovariance.
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6.2. Standard error estimation

Here we present a novel method of obtaining standard error estimates for debiased Whittle
estimates. This method was used to calculate standard errors for our application example in
Table 2. In the Supplementary Material we show that the p×p covariance matrix of the estimated
vector θ̂ satisfies

var(θ̂) = E{H (θ)}−1 var{∇�D(θ)}E{H (θ)}−1{1 + o(1)}, (14)

where ∇ = (∂/∂θ1 ∂/∂θ2 . . . ∂/∂θp)
T and ∇�D(θ) is known as the score. The p×p matrix H (θ),

known as the Hessian, is defined entrywise by Hij(θ) = ∂2�D(θ)/(∂θi∂θj), and its expectation can
be approximated either analytically or numerically at θ̂ . The remaining term in (14), var{∇�D(θ)},
is the p × p covariance matrix of the score. The diagonal elements of this matrix, which are
variances of individual components of the score, can be expressed using (7) as

var
{

∂

∂θi
�D(θ)

}
= var

{∑
ω∈


∂ f̄n (ω; θ)

∂θi

I (ω)

f̄ 2
n (ω; θ)

}
= var

⎧⎨
⎩

n∑
j=1

aij(θ)I (ωj)

⎫⎬
⎭

=
n∑

j=1

n∑
k=1

aij(θ)aik(θ) cov{I (ωj), I (ωk)},

where wj are the elements of 
 defined in (6) and

aij(θ) ≡ ∂ f̄n
(
ωj; θ

)
∂θi

1

f̄ 2
n (ωj; θ)

.

Here we have made use of the fact that the ∂ log{f̄n(ω; θ)}/∂θ term is deterministic and therefore
has no variance.As we have established asymptotic efficiency for θ̂ , we can now use the invariance
principle of maximum likelihood estimators (Casella & Berger, 2002, p. 320) to construct an
estimator of the variance,

ˆvar
{

∂

∂θi
�D(θ)

}
=

n∑
j=1

n∑
k=1

âij(θ)âik(θ) ˆcov{I (ωj), I (ωk)},

and by the same reasoning we can approximate âij(θ) by aij(θ̂). Then, to estimate the covariance
of the periodogram, we compute

ˆcov{I (ωj), I (ωk)} =
∣∣∣∣ 1

2πn

∫ π

−π

f (ω′; θ̂ )Dn(ωj − ω′)D∗
n(ωk − ω′) dω′

∣∣∣∣
2

,

where the asterisk denotes the complex conjugate and Dn(ω) is the noncentred Dirichlet kernel
defined by

Dn(ω) ≡ sin (nω/2)

sin (ω/2)
exp{−i ω(n + 1)/2},

so that we arrive at estimates of the diagonal elements of var{∇�D(θ)}. Estimates of
cov[∂/∂θi{�D(θ)}, ∂/∂θj{�D(θ)}], which are the off-diagonal terms of var{∇�D(θ)}, can be found
in the same way. Then, substituting all estimated entries of var{∇�D(θ)} into (14), along with the
estimate of the Hessian, gives estimates of the variance of the estimators.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/106/2/251/5318578 by guest on 13 N
ovem

ber 2019

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy071#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asy071#supplementary-data


Debiased Whittle likelihood 265

7. Discussion

Standard theory shows that standard Whittle estimates are consistent with optimal conver-
gence rates if the spectrum and its first and second partial derivatives in θ are continuous in ω

and bounded from above and below (Dzhaparidze & Yaglom, 1983), as well as being twice con-
tinuously differentiable in θ . In contrast, we do not require that the spectrum or its derivatives be
continuous in ω, so Theorem 1 will hold for discontinuous spectra, as long as the other assump-
tions, such as Riemann integrability, are satisfied. As detailed in the Supplementary Material, this
is possible because the expectation of the score is zero after debiasing, which would not be the
case for the standard Whittle likelihood; so we only need to consider the variance of the score
and the Hessian. To control these variances, we make repeated use of a bound on the variance
of linear combinations of the periodogram, a result previously established in Theorem 3.1 of
Giraitis & Koul (2013) under a different set of assumptions.

It can easily be shown that the assumptions in Theorem 1 are weaker than standard Whittle
assumptions, despite conditions on the behaviour of the expected periodogram f̄n(ω; θ) in assump-
tion (v). This is because if the spectral density f (ω; θ) and its first and second partial derivatives
in θ are continuous in both ω and θ , then it can be shown, by applying the Leibniz integration rule
to the first and second derivatives of (8) with respect to θ , that f (ω; θ) being twice continuously
differentiable in θ implies that f̄n(ω; θ) is twice continuously differentiable in θ . To show this, we
make use of Proposition 3.1 in Stein & Shakarchi (2003), which states that the convolution of two
integrable and periodic functions is itself continuous. This result can also be used to show that
f̄n(ω; θ) is always continuous in ω, even if f (ω; θ) is not, as from (8) we see that f̄n(ω; θ) is the
convolution of f (ω; θ) and the Fejér kernel, two functions which are integrable and 2π -periodic
in ω. Therefore, not only does f̄n(ω; θ) remove bias from blurring and aliasing and is computa-
tionally efficient to evaluate, but it also has desirable theoretical properties leading to consistency
and optimal convergence rates of debiased Whittle estimates under weaker assumptions.

Acknowledgement

We thank the associate editor and referees for their extremely helpful suggestions in improving
the paper. The work of Sykulski and Olhede was supported by the U.K. Engineering and Physical
Sciences Research Council and the 7th European Community Framework Programme. Lilly was
supported by the Physical Oceanography programme of the U.S. National Science Foundation.

Supplementary material

Supplementary material available at Biometrika online includes additional simulation results,
technical proofs, and details of a class of non-Gaussian processes satisfying the assumptions
of our theory. All simulation results can be reproduced exactly in Matlab, and the data can be
downloaded using the software available athttps://github.com/AdamSykulski/SPG.
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